CAP 理论
如何使用BASE理论
以InfluxDB系统中DATA节点的集群实现为例。DATA节点的核心功能是读和写,所以基本可用是指读和写的基本可用。我们可以通过分片和多副本实现读和写的基本可用。也就是说,将同一业务的数据先分片,再以多份副本的形式分布在不同的节点上。如图所示。除非这个3节点2副本的DATA集群超过一半的节点都发生故障,否则是能保障所有数据的读写的。
那么,如何实现最终一致性呢?就像上文提到的,我们可以通过写时修复和异步修复实现最终一致性。另外可以同时实现自定义写一致性级别,如支持All、Quorum、One、Any4种写一致性级别,用户在写数据的时候,可以根据业务数据特点,设置不同的写一致性级别。
注意
对于任何集群而言,不可预知的故障的最终后果都是系统过载,所以,如何设计过载保护,实现系统在过载时的基本可用,时开发和运营互联网后天的分布式系统的重中之重。建议在开发实现分布式系统前就要充分考虑如何实现基本可用
Paxos算法
概述
提到分布式算法,就不得不提Paxos算法,在过去几十年里,它基本上时分布式共识的代名词,当前最常用的一批共识算法都是基于它改进的。比如, Fast Paxos算法、Cheap Paxos算法、Raft算法等。但是,很多人都会在准确和系统理解Paxos算法上踩坑,比如,只知道它可以用来达成共识,却不知道它是如何达成共识的。
这其实从侧面说明了Paxos算法有一定的难度,可分布式算法本身就很复杂,Paxos算法自然也不会例外。当然,除了这一点,还与Paxos算法的提出者莱斯利兰伯特有关。
兰伯特提出的Paxos算法包含两个部分:
- 1.一