leetcode 70.爬楼梯 C语言 动态规划

这篇博客探讨了一种典型的动态规划问题——爬楼梯。题目中指出,每次可以爬1或2个台阶,任务是计算到达第n阶的不同方案数。通过状态转移方程f(n)=f(n-1)+f(n-2)以及初始状态f(0)=1,f(1)=1,可以递归地求解方案数。代码示例展示了如何用动态规划实现这一过程,时间复杂度和空间复杂度均为O(n)。此问题与斐波那契数列有相似之处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

分析题目

这是典型的动态规划问题,每次可以爬1或2个台阶,让我们求爬到第n阶的方案数,有两种情况,情况一:从n-1阶爬上来。情况二:从n-2阶爬上来;只要把两种情况的方案数相加即可;因此求爬到第n阶的方案数就转换为求爬到第n-1阶和第n-2阶的方案数。

运用动态规划

设计状态:求第n阶的方案数就转移到求第n-1阶和第n-2阶的方案数

写出状态方程:f(n)=f(n-1)+f(n-2);

设定初始状态:f(0)=1; f(1)=1;

执行状态转移

返回最终解

代码段

int climbStairs(int n){
    int f[46]={1,1};           //定义一个存放方案数结果的数组,并且设置初始状态
    int i;
    for(i=2;i<=n;i++)
    {
        f[i]=f[i-1]+f[i-2];    //执行状态转移
    }
    return f[n];

}

时间复杂度和空间复杂度分析

代码共执行n-2次,因此时间复杂度为O(n)

定义了一个数组,因此空间复杂度为O(n)

总结

这道题和斐波那契数列简直一模一样,只是换了一个包装

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值