Inversion Counting(树状数组/奇偶性)

本文解析了如何通过InversionCounting算法解决Codeforces 911D题目的逆序对奇偶性问题。核心思路在于理解交换操作对总逆序对的影响,并利用区间更新技巧优化查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Inversion Counting

传送门 Problem - 911D - Codeforces

题意

不断翻转区间,求出翻转后区间的逆序对的奇偶性。

思路

如果总对数是奇数,那么之前和交换之后一定不同奇偶性;如果是偶数,那么一定同奇偶。而交换左边区间和右边区间逆序对对数都不受影响。所以只要看交换区间的总对数的奇偶性即可。

#include <bits/stdc++.h>
typedef long double ld;
typedef long long ll;
#define pb push_back
#define mk make_pair
#define mt make_tuple
#define eb emplace_back
#define pob pop_back
#define rz resize
#define mem(a,b) memset(a,b,sizeof(a))
#define all(a) (a).begin(),(a).end()
#define rall(a) (a).rbegin(),(a).rend()
#define debug(a) cout<<#a<<"="<<a<<endl;
#define xx first
#define yy second
#define qwe(i,a,b) for(int i=a;i<=b;i++)
#define ewq(i,a,b) for(int i=a;i>=b;i--)
inline ll rr(){ll f=1,x=0;char ch;do{ch=getchar();if(ch=='-')f=-1;}while(ch<'0'||ch>'9');do{x=x*10+ch-'0';ch=getchar();}while(ch>='0'&&ch<='9');return f*x;}
using namespace std;
const ll INF=0x3f3f3f3f,inf=0x3f3f3f3f3f3f3f;
const ll mod[2]={int(1e9 + 7), 10007};
const int base[2]={29,31};
const int maxn=2e3+6;
ll qpow(ll x,ll n){ll ans=1;while(n>0){if(n&1)ans=ans*x%mod[1];x=x*x%mod[1];n>>=1;}return ans;}

ll c[maxn],n,m,a[maxn];
ll query(int x) {
    ll ans=0;
    for(;x;x-=(x&-x)) {
        ans+=c[x];
    }
    return ans;
}
void modify(int x,int s) {
    for(;x<=n;x+=(x&-x)) {
        c[x]+=s;
    }
}
int main(int argc, char const *argv[]) {
    n=rr();
    ll ans=0;
    for(int i=1;i<=n;i++) {
        a[i]=rr();
        ans+=query(n)-query(a[i]);
        modify(a[i],1);
    }
    if(ans&1) ans=1;
    else ans=0;
    m=rr();
    while (m--) {
        int le=rr(),ri=rr();
        int sz=ri-le+1;
        sz=(sz*sz-sz)>>1;
        if(sz&1) ans=!ans;
        std::cout << (ans&1?"odd":"even") << '\n';
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值