基于线性回归预测碳排放约束下的煤炭消费量

140 篇文章 ¥59.90 ¥99.00
本文介绍在碳排放约束下,如何用MATLAB进行煤炭消费量的线性回归预测。首先收集包含煤炭消费及影响因素的数据,进行预处理,然后划分训练和测试集,使用最小二乘法训练模型,并评估预测误差。虽然简单,但线性回归模型能为政策制定提供参考,实际应用中可能需要考虑更复杂模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在环境保护日益受到关注的背景下,控制碳排放已成为全球各国的重要任务之一。对于煤炭等传统能源消耗的预测和规划,准确估计煤炭消费量对于制定碳排放控制政策具有重要意义。本文将介绍如何使用线性回归方法来预测在碳排放约束条件下的煤炭消费量,并提供相应的MATLAB源代码。

首先,我们需要收集相关的数据。数据应包括煤炭消费量以及与之相关的影响因素,例如经济增长率、人口数量、工业产值等。假设我们已经收集到了这些数据,并将其存储在一个CSV文件中。接下来,我们将使用MATLAB来进行数据预处理和线性回归分析。

% 导入数据
data = readmatrix('data.csv');

% 提取特征和目标变量
X = data(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值