兄弟们,号称地表最强的AI Agent开发平台,Coze竟然开源了。
而且是开源了几乎所有的组件。
这下轮到Dify瑟瑟发抖了。
今天,让我们一起来看下这个开源版本的Coze Studio吧!附部署教程!
一、介绍
Coze Studio 是一款一站式 AI 智能体开发工具,源自服务过数万企业和数百万开发者的 “Coze 开发平台”,其核心引擎已完全开源。
它致力于降低 AI 智能体开发与应用的门槛,让开发者能够通过无代码或低代码的方式,快速创建、调试和部署 AI 智能体、应用及工作流。
从技术架构来看,Coze Studio 后端采用 Golang 开发,前端基于 React + TypeScript 构建,整体遵循微服务架构和领域驱动设计(DDD)原则,为开发者提供了高性能、高可扩展性且易于定制的底层框架,助力应对复杂的业务需求。
无论是新手开发者还是专业团队,都能借助它将创意快速转化为实际的 AI 应用。
二、功能特性
Coze Studio 涵盖了 AI 智能体开发所需的各类核心功能,主要包括以下模块:
-
模型服务:支持管理模型列表,可集成 OpenAI、火山引擎等多种服务,为智能体提供强大的算力支持。
-
智能体构建:能够完成智能体的搭建、发布和管理,还支持配置工作流、知识库等资源,让智能体更贴合业务场景。
-
应用创建:可创建和发布应用,并通过工作流构建业务逻辑,实现多样化的功能需求。
-
工作流搭建:提供可视化画布,支持工作流的创建、修改、发布和删除,开发者可通过拖拽节点快速搭建流程。
-
资源管理:支持创建和管理插件、知识库、数据库、提示词等资源,丰富智能体的功能和数据来源。
-
API 与 SDK:提供创建对话、发起聊天等 OpenAPI,支持通过 Chat SDK 将智能体或应用集成到自有应用中,拓展应用场景。
三、安装
想要体验 Coze Studio 的强大功能,只需按照以下步骤进行部署:
环境要求
-
最低系统配置:2 核 CPU、4GB 内存
-
预先安装 Docker 和 Docker Compose,并启动 Docker 服务
部署步骤
-
获取源代码:执行下面命令clone源码
# 克隆代码仓库
git clone https://github.com/coze-dev/coze-studio.git
-
配置模型:进入项目目录,复制模型配置模板
cd coze-studio
# 复制豆包-seed-1.6模型的配置模板
cp backend/conf/model/template/model_template_ark_doubao-seed-1.6.yaml backend/conf/model/ark_doubao-seed-1.6.yaml
-
编辑配置文件:编辑配置文件
backend/conf/model/ark_doubao-seed-1.6.yaml
,设置id
(自定义且唯一的模型 ID)、meta.conn_config.api_key
(模型服务的 API Key)、meta.conn_config.model
(模型服务的模型 ID)并保存。 -
部署并启动服务:首次部署启动可能需要一定时间拉取和构建镜像,请耐心等待。当看到 “Container coze-server Started” 信息时,说明服务启动成功。
# 进入docker目录
cd docker
# 复制环境变量示例文件
cp .env.example .env
# 启动服务
docker compose --profile "*" up -d
-
访问 Coze Studio:服务启动后,通过浏览器访问
http://localhost:8888/
即可打开 Coze Studio。
四、体验
在浏览器输入http://localhost:8888/
,进入到首页:
注册完账号之后,即可进入到工作台界面:
可以看到基本和没有开源前的Coze一模一样,我们可以创建「智能体」和「应用」:
进入到「创建智能体」界面,可以看到功能基本都有,包括:插件、工作量、数据库、表格等等:
智能体开发完成之后,可以发布为API:
在「资源库」中,我们可以创建:插件、工作流、知识库、提示词、数据库
下面看一下创建工作流的界面:
可以看到这个开源版本还是比较完整的,我觉得大家可以放下手头的dify,来尝尝这个热腾腾的Coze了!
五、总结
Coze Studio 作为一款开源的一站式 AI 智能体开发工具,凭借其丰富的功能、灵活的架构和便捷的部署方式,为开发者提供了从开发到部署的全流程支持。
它不仅降低了 AI 智能体开发的门槛,还鼓励社区共同建设,推动 AI 领域的深入探索与实践。
无论你是想要快速搭建一个简单的 AI 助手,还是开发复杂的智能业务系统,Coze Studio 都能成为你的得力助手。
赶紧尝试部署,开启你的 AI 智能体开发之旅吧!
我们该怎样系统的去转行学习大模型 ?
很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!
第一不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、大模型系列视频教程(免费分享)
四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。
L5阶段:专题集丨特训篇 【录播课】
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取