【深度学习】LSTM模型,GRU模型计算公式及其优缺点介绍

一.LSTM介绍

LSTM(Long Short-Term Memory)也称长短时记忆结构, 它是传统RNN的变体, 与经典RNN相比能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时LSTM的结构更复杂, 它的核心结构可以分为四个部分去解析:

  • 遗忘门
  • 输入门
  • 细胞状态
  • 输出门

 1LSTM的内部结构图 

1.1 LSTM结构分析

  • 结构解释图:

 

  • 遗忘门部分结构图与计算公式:

 

  • 遗忘门结构分析:

    • 与传统RNN的内部结构计算非常相似, 首先将当前时间步输入x(t)与上一个时间步隐含状态h(t-1)拼接, 得到[x(t), h(t-1)], 然后通过一个全连接层做变换, 最后通过sigmoid函数进行激活得到f(t), 我们可以将f(t)看作是门值, 好比一扇门开合的大小程度, 门值都将作用在通过该扇门的张量, 遗忘门门值将作用的上一层的细胞状态上, 代表遗忘过去的多少信息, 又因为遗忘门门值是由x(t), h(t-1)计算得来的, 因此整个公式意味着根据当前时间步输入和上一个时间步隐含状态h(t-1)来决定遗忘多少上一层的细胞状态所携带的过往信息.
  • 遗忘门内部结构过程演示:

  • 激活函数sigmiod的作用:
    • 用于帮助调节流经网络的值, sigmoid函数将值压缩在0和1之间.
  • 输入门部分结构图与计算公式:

 

  • 输入门结构分析:

    • 我们看到输入门的计算公式有两个, 第一个就是产生输入门门值的公式, 它和遗忘门公式几乎相同, 区别只是在于它们之后要作用的目标上. 这个公式意味着输入信息有多少需要进行过滤. 输入门的第二个公式是与传统RNN的内部结构计算相同. 对于LSTM来讲, 它得到的是当前的细胞状态, 而不是像经典RNN一样得到的是隐含状态.
  • 输入门内部结构过程演示:

 

  • 细胞状态更新图与计算公式:

 

  • 细胞状态更新分析:

    • 细胞更新的结构与计算公式非常容易理解, 这里没有全连接层, 只是将刚刚得到的遗忘门门值与上一个时间步得到的C(t-1)相乘, 再加上输入门门值与当前时间步得到的未更新C(t)相乘的结果. 最终得到更新后的C(t)作为下一个时间步输入的一部分. 整个细胞状态更新过程就是对遗忘门和输入门的应用.
  • 细胞状态更新过程演示:

 

  • 输出门部分结构图与计算公式:

 

  • 输出门结构分析:

    • 输出门部分的公式也是两个, 第一个即是计算输出门的门值, 它和遗忘门,输入门计算方式相同. 第二个即是使用这个门值产生隐含状态h(t), 他将作用在更新后的细胞状态C(t)上, 并做tanh激活, 最终得到h(t)作为下一时间步输入的一部分. 整个输出门的过程, 就是为了产生隐含状态h(t).
  • 输出门内部结构过程演示:

 

1.2 Bi-LSTM介绍

Bi-LSTM即双向LSTM, 它没有改变LSTM本身任何的内部结构, 只是将LSTM应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出.


  • Bi-LSTM结构分析:
    • 我们看到图中对"我爱中国"这句话或者叫这个输入序列, 进行了从左到右和从右到左两次LSTM处理, 将得到的结果张量进行了拼接作为最终输出. 这种结构能够捕捉语言语法中一些特定的前置或后置特征, 增强语义关联,但是模型参数和计算复杂度也随之增加了一倍, 一般需要对语料和计算资源进行评估后决定是否使用该结构.

1.3 使用Pytorch构建LSTM模型

  • 位置: 在torch.nn工具包之中, 通过torch.nn.LSTM可调用.

  • nn.LSTM类初始化主要参数解释:

    • input_size: 输入张量x中特征维度的大小.
    • hidden_size: 隐层张量h中特征维度的大小.
    • num_layers: 隐含层的数量.
    • bidirectional: 是否选择使用双向LSTM, 如果为True, 则使用; 默认不使用.
  • nn.LSTM类实例化对象主要参数解释:

    • input: 输入张量x.
    • h0: 初始化的隐层张量h.
    • c0: 初始化的细胞状态张量c.
  • nn.LSTM使用示例:

    # 定义LSTM的参数含义: (input_size, hidden_size, num_layers)
    # 定义输入张量的参数含义: (sequence_length, batch_size, input_size)
    # 定义隐藏层初始张量和细胞初始状态张量的参数含义:
    # (num_layers * num_directions, batch_size, hidden_size)
    
    >>> import torch.nn as nn
    >>> import torch
    >>> rnn = nn.LSTM(5, 6, 2)
    >>> input = torch.randn(1, 3, 5)
    >>> h0 = torch.randn(2, 3, 6)
    >>> c0 = torch.randn(2, 3, 6)
    >>> output, (hn, cn) = rnn(input, (h0, c0))
    >>> output
    tensor([[[ 0.0447, -0.0335,  0.1454,  0.0438,  0.0865,  0.0416],
             [ 0.0105,  0.1923,  0.5507, -0.1742,  0.1569, -0.0548],
             [-0.1186,  0.1835, -0.0022, -0.1388, -0.0877, -0.4007]]],
           grad_fn=<StackBackward>)
    >>> hn
    tensor([[[ 0.4647, -0.2364,  0.0645, -0.3996, -0.0500, -0.0152],
             [ 0.3852,  0.0704,  0.2103, -0.2524,  0.0243,  0.0477],
             [ 0.2571,  0.0608,  0.2322,  0.1815, -0.0513, -0.0291]],
    
            [[ 0.0447, -0.0335,  0.1454,  0.0438,  0.0865,  0.0416],
             [ 0.0105,  0.1923,  0.5507, -0.1742,  0.1569, -0.0548],
             [-0.1186,  0.1835, -0.0022, -0.1388, -0.0877, -0.4007]]],
           grad_fn=<StackBackward>)
    >>> cn
    tensor([[[ 0.8083, -0.5500,  0.1009, -0.5806, -0.0668, -0.1161],
             [ 0.7438,  0.0957,  0.5509, -0.7725,  0.0824,  0.0626],
             [ 0.3131,  0.0920,  0.8359,  0.9187, -0.4826, -0.0717]],
    
            [[ 0.1240, -0.0526,  0.3035,  0.1099,  0.5915,  0.0828],
             [ 0.0203,  0.8367,  0.9832, -0.4454,  0.3917, -0.1983],
             [-0.2976,  0.7764, -0.0074, -0.1965, -0.1343, -0.6683]]],
           grad_fn=<StackBackward>)

    1.4 LSTM优缺点

  • LSTM优势:

    LSTM的门结构能够有效减缓长序列问题中可能出现的梯度消失或爆炸, 虽然并不能杜绝这种现象, 但在更长的序列问题上表现优于传统RNN.

  • LSTM缺点:

    由于内部结构相对较复杂, 因此训练效率在同等算力下较传统RNN低很多.

 二. GRU介绍

GRU(Gated Recurrent Unit)也称门控循环单元结构, 它也是传统RNN的变体, 同LSTM一样能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时它的结构和计算要比LSTM更简单, 它的核心结构可以分为两个部分去解析:

  • 更新门
  • 重置门

 1GRU的内部结构图

 1.1 GRU结构分析

  • 结构解释图:

 

  • GRU的更新门和重置门结构图:
  • 内部结构分析:

    • 和之前分析过的LSTM中的门控一样, 首先计算更新门和重置门的门值, 分别是z(t)和r(t), 计算方法就是使用X(t)与h(t-1)拼接进行线性变换, 再经过sigmoid激活. 之后重置门门值作用在了h(t-1)上, 代表控制上一时间步传来的信息有多少可以被利用. 接着就是使用这个重置后的h(t-1)进行基本的RNN计算, 即与x(t)拼接进行线性变化, 经过tanh激活, 得到新的h(t). 最后更新门的门值会作用在新的h(t),而1-门值会作用在h(t-1)上, 随后将两者的结果相加, 得到最终的隐含状态输出h(t), 这个过程意味着更新门有能力保留之前的结果, 当门值趋于1时, 输出就是新的h(t), 而当门值趋于0时, 输出就是上一时间步的h(t-1).
1.2 Bi-GRU介绍 

Bi-GRU与Bi-LSTM的逻辑相同, 都是不改变其内部结构, 而是将模型应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出. 具体参见上小节中的Bi-LSTM.

1.3 使用Pytorch构建GRU模型
  • 位置: 在torch.nn工具包之中, 通过torch.nn.GRU可调用.

  • nn.GRU类初始化主要参数解释:

    • input_size: 输入张量x中特征维度的大小.
    • hidden_size: 隐层张量h中特征维度的大小.
    • num_layers: 隐含层的数量.
      • bidirectional: 是否选择使用双向LSTM, 如果为True, 则使用; 默认不使用.
  • nn.GRU类实例化对象主要参数解释:

    • input: 输入张量x.
      • h0: 初始化的隐层张量h.
  • nn.GRU使用示例:

    >>> import torch
    >>> import torch.nn as nn
    >>> rnn = nn.GRU(5, 6, 2)
    >>> input = torch.randn(1, 3, 5)
    >>> h0 = torch.randn(2, 3, 6)
    >>> output, hn = rnn(input, h0)
    >>> output
    tensor([[[-0.2097, -2.2225,  0.6204, -0.1745, -0.1749, -0.0460],
             [-0.3820,  0.0465, -0.4798,  0.6837, -0.7894,  0.5173],
             [-0.0184, -0.2758,  1.2482,  0.5514, -0.9165, -0.6667]]],
           grad_fn=<StackBackward>)
    >>> hn
    tensor([[[ 0.6578, -0.4226, -0.2129, -0.3785,  0.5070,  0.4338],
             [-0.5072,  0.5948,  0.8083,  0.4618,  0.1629, -0.1591],
             [ 0.2430, -0.4981,  0.3846, -0.4252,  0.7191,  0.5420]],
    
            [[-0.2097, -2.2225,  0.6204, -0.1745, -0.1749, -0.0460],
             [-0.3820,  0.0465, -0.4798,  0.6837, -0.7894,  0.5173],
             [-0.0184, -0.2758,  1.2482,  0.5514, -0.9165, -0.6667]]],
           grad_fn=<StackBackward>)
    1.4 GRU优缺点
  • GRU的优势:

    • GRU和LSTM作用相同, 在捕捉长序列语义关联时, 能有效抑制梯度消失或爆炸, 效果都优于传统RNN且计算复杂度相比LSTM要小.
  • GRU的缺点:

    • GRU仍然不能完全解决梯度消失问题, 同时其作用RNN的变体, 有着RNN结构本身的一大弊端, 即不可并行计算, 这在数据量和模型体量逐步增大的未来, 是RNN发展的关键瓶颈.

 

<think>嗯,用户让我介绍一下EEMD-LSTM模型。我之前对这个模型可能有点模糊,但需要理清楚思路,确保正确性。首先,我应该分步骤来拆解这两个主要部分:EEMD和LSTM,然后看它们是怎么结合在一起的。 首先,EEMD,全称是Ensemble Empirical Mode Decomposition,也就是集合经验模态分解。我记得EMD是一种信号处理方法,用来处理非线性和非平稳信号,通过分解成固有模态函数(IMFs)。但EMD有个问题,就是模态混叠,这时候EEMD通过加入高斯白噪声进行多次分解,再取平均来缓解这个问题。对吗?可能需要确认一下这个过程的具体步骤,比如噪声的添加次数和平均方式。 然后是LSTM,长短期记忆网络,属于RNN的一种,擅长处理时间序列数据,因为它有记忆单元,可以捕捉长期依赖关系。用户可能想知道为什么LSTM会被用在EEMD之后,可能是在分解后的子序列上进行预测,再整合结果? 接下来,EEMD-LSTM的结合方式。通常这类模型会用分解方法将原始信号分解成多个子信号,每个子信号用LSTM建模预测,最后将结果相加。比如CEEMDAN-LSTM或者其他变种也是这样做的。需要确认EEMD-LSTM的具体流程是否正确,比如分解后的每个IMF是否单独输入到LSTM中进行训练和预测,再集成结果。 可能的应用场景包括电力负荷预测、股票价格预测、风速预测等时间序列预测问题。需要举一些例子,说明分解后处理的好处,比如降低非平稳性,提高预测精度。 还要考虑EEMD-LSTM的优势和可能的缺点。优势在于处理非线性、非平稳数据,分解后更容易建模;缺点可能是计算复杂度高,分解和多个LSTM模型的训练需要更多资源。此外,参数调整可能更复杂,比如EEMD中的噪声幅度和集成次数,以及每个LSTM的结构参数。 另外,要确保提到的步骤正确,比如EEMD分解得到IMF和残差,每个分量分别用LSTM预测,最后综合结果。是否有文献支持这种结构?可能需要查证相关论文,但根据经验,这种组合在时间序列预测中是常见的策略。 用户可能需要了解模型的应用场景、步骤、优缺点,以及为什么这样的组合有效。需要以清晰的结构呈现,帮助用户逐步理解,可能他们是想应用这个模型解决实际问题,或者进行研究。所以需要强调实际应用中的考虑因素,比如计算资源、参数调整等。 总结下来,介绍应该分为: 1. EEMD的原理和作用 2. LSTM的原理和作用 3. EEMD-LSTM的结合方式 4. 应用场景 5. 优缺点 6. 可能的改进方向 需要确保术语正确,比如IMF的定义,模态混叠的问题,以及EEMD如何通过噪声添加解决这个问题。同时,LSTM的结构,如遗忘门、输入门、输出门的作用可能需要简要提及,但不用太深入,因为用户可能更关注整体模型结构。 最后,检查是否有混淆EEMD与其他变种,比如CEEMDAN,确保准确性。可能还需要提到EEMD-LSTM相对于单一LSTM或其他分解方法的优势,比如更高的预测精度。</think>### EEMD-LSTM模型介绍 EEMD-LSTM是一种结合**集合经验模态分解(EEMD)**和**长短期记忆网络(LSTM)**的混合预测模型,主要用于处理**非线性、非平稳时间序列**的预测问题(如电力负荷、股票价格、气象数据等)。其核心思想是通过信号分解降低原始数据的复杂性,再结合深度学习模型捕捉时序特征。 --- #### 一、模型组成与原理 1. **EEMD(集合经验模态分解)** - **作用**:将原始非平稳信号分解为多个相对平稳的**固有模态函数(IMF)**和一个**残差项**。 - **步骤**: 1. 对原始信号多次添加高斯白噪声,每次进行经验模态分解(EMD)。 2. 对多次分解结果取均值,消除噪声干扰,缓解模态混叠问题。 - **数学表示**: $$ x(t) = \sum_{i=1}^n \text{IMF}_i(t) + r_n(t) $$ 其中,$x(t)$为原始信号,$\text{IMF}_i(t)$为分解后的子信号,$r_n(t)$为残差。 2. **LSTM(长短期记忆网络)** - **作用**:捕捉时间序列中的长期依赖关系,通过门控机制(遗忘门、输入门、输出门)控制信息流动。 - **核心公式**(以遗忘门为例): $$ f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) $$ 其中,$\sigma$为Sigmoid函数,$W_f$为权重矩阵,$h_{t-1}$为前一时刻隐状态,$x_t$为当前输入。 --- #### 二、EEMD-LSTM的工作流程 1. **信号分解** - 使用EEMD将原始时间序列分解为多个IMF分量(如$\text{IMF}_1, \text{IMF}_2, \dots, \text{IMF}_k$)和残差项。 2. **分量预测** - 对每个IMF分量和残差项**单独训练LSTM模型**,学习其局部时序规律。 3. **结果重构** - 将所有分量的预测结果相加,得到最终预测值: $$ \hat{y}(t) = \sum_{i=1}^k \hat{\text{IMF}}_i(t) + \hat{r}_k(t) $$ --- #### 三、优势与适用场景 1. **优势** - **降低非平稳性**:EEMD将复杂信号简化为多个平稳子信号,提升LSTM的预测精度。 - **抗噪能力**:通过集合平均减少噪声干扰。 - **灵活性**:可结合其他模型(如GRU、Attention)进一步优化。 2. **适用场景** - 电力负荷预测 - 股票价格波动分析 - 风速、降水量等气象预测 - 机械振动信号故障诊断 --- #### 四、局限性 1. **计算复杂度高**:EEMD需多次分解,LSTM需训练多个模型,耗时较长。 2. **参数敏感**:噪声幅度、分解次数、LSTM超参数需精细调优。 3. **模态数量不确定**:IMF分量的个数依赖数据特性,可能影响模型稳定性。 --- #### 五、改进方向 - **结合优化算法**:使用遗传算法、粒子群优化(PSO)自动调参。 - **引入注意力机制**:增强对关键分量的关注。 - **替代分解方法**:如CEEMDAN(自适应噪声完备EEMD)减少重构误差。 --- ### 总结 EEMD-LSTM通过“分解-预测-集成”的策略,有效应对复杂时间序列的预测挑战,尤其适合**高噪声、非平稳数据**场景。实际应用中需权衡计算成本与精度需求,并针对具体问题调整模型结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值