大模型(LLM)的安全保障涉及从开发到部署的各个环节。这包括应对数据投毒、越狱攻击等安全风险,并需要技术手段、管理流程和标准规范共同作用。
下面表格汇总了其主要安全风险、受影响环节及潜在影响,帮你快速建立整体认识:
安全风险 | 简要描述 | 主要受影响环节 | 潜在影响 |
---|---|---|---|
数据投毒 | 训练数据被恶意污染,植入偏见或后门 | 模型训练阶段 | 模型输出带有偏见、生成不安全代码或泄露敏感信息 |
越狱攻击 | 通过特定提示词绕过模型安全机制 | 模型推理阶段 | 模型生成不当内容、泄露隐私或执行恶意操作 |
提示词注入 | 通过精心构造的输入误导模型行为 | 模型推理阶段 | 模型被操控进行未授权操作、数据泄露 |
模型窃取 | 通过API查询等方式窃取模型参数或功能 | 模型部署与服务阶段 | 知识产权损失、模型被复制滥用 |
成员推断攻击 | 判断特定数据是否用于模型训练 | 模型训练与部署阶段 | 训练数据隐私泄露 |
对抗性样本 | 对输入添加难以察觉的扰动,导致模型错误分类或输出 | 模型推理阶段 | 模型判断被干扰,系统可靠性下降 |
AI智能体滥用 | 利用AI智能体的自动化能力进行大规模恶意操作 | 模型应用与集成阶段 | 自动化攻击、数据批量泄露、系统被持续控制 |
🛡️ 大模型安全的技术保障
大模型的安全需要“技管并重”。下面介绍一些关键的技术手段:
- 强化训练数据安全:训练数据的质量直接影响模型的安全性。需要对数据进行清晰识别和过滤,并控制数据来源,以防止“数据投毒”和偏见注入。
- 改进模型对齐技术:在模型训练阶段,通过监督微调(SFT)、从人类反馈中进行强化学习(RLHF) 等技术,使模型的行为与人类价值观和安全性目标保持一致。
- 实施运行时监控与防护:
- 输入/输出过滤与审核:对用户输入和模型生成的内容进行实时检测,过滤有害、敏感或不合规的内容。例如,Google Cloud 的 Security Command Center 提供了 Sensitive Data Protection 功能来识别和打码机密信息。
- 实时检测与响应:监控模型的异常行为,如突然生成大量输出、频繁访问敏感接口等,并及时触发防护机制。Google 的 Model Armor 功能可以筛查 AI 智能体、工具和 MCP 服务器之间的交互,降低提示词注入和工具中毒的风险。
- 采用隐私保护技术:
- 机密计算:使用 可信执行环境(TEE) 等硬件安全技术保护模型和数据的隐私。例如,TEE+Legacy GPU 混合算力方案将模型的轻量层计算纳入 TEE 可信域保护,屏蔽来自主机的特权访问,从而阻断模型窃取、Prompt 窃取等可能的攻击。
- 联邦学习:允许模型在本地数据上训练,只共享参数更新,避免原始数据集中,减少隐私泄露风险。
- 保障应用与集成安全:
- 对 AI 智能体实施严格的身份认证、权限控制和操作审计,防止其被恶意利用或越权操作。
- 在使用 检索增强生成(RAG) 时,确保外部知识库的来源可靠,并防范“知识库投毒”攻击。国防科技大学的研究团队提出了 CodeGuarder 框架,通过向模型注入安全知识来防御此类攻击。
📜 遵循标准与最佳实践
遵循国内外权威标准与框架,能系统性地提升大模型安全保障水平:
- 国际标准与框架:
- NIST AI RMF(人工智能风险管理框架):提供了管理AI风险的可操作指南,强调衡量和管理AI系统的可信度。
- OWASP AI Security & Privacy Guide:提供了详尽的AI应用安全和隐私检查清单。
- 国内标准与法规:
- 《人工智能计算平台安全框架》(GB/T 45958-2025):我国发布的国家标准,旨在建立AI计算平台安全框架,包括安全功能、安全机制、安全模块和服务接口。
- 欧盟《人工智能法》:采用了基于风险的分级监管模式,将AI系统划分为不同风险等级并施以相应监管要求。
🏢 加强组织安全治理
技术手段需与组织治理相结合,才能构筑完整的大模型安全防线:
- 全面的风险管理:将大模型安全纳入企业整体信息安全风险管理体系,定期进行风险评估和审计。
- 贯穿生命周期的安全:将安全考量融入模型设计、开发、测试、部署、运维的每一个环节。
- 人员培训与意识提升:对开发、测试、运维等相关人员进行大模型安全风险和安全实践的培训。
- 供应链安全:对第三方模型、数据集、软件库、API服务等进行安全评估,确保供应链安全可靠。
💡 给你的实用建议
- 确立“安全左移”原则:在模型开发的早期阶段就引入安全考量,而非事后补救。
- 采用纵深防御策略:不要依赖单一安全措施,而是构建多层、冗余的防御体系。
- 定期进行“红队测试”:主动模拟攻击者的技术和方法,寻找系统的安全漏洞。
- 保持警惕与持续学习:大模型安全威胁日新月异,需持续关注最新安全动态和漏洞信息,并及时调整安全策略。
💎 总结
保障大模型安全是一个需要多方协同、持续演进的系统工程。它需要我们将技术方案、标准规范和组织治理有机结合,从开发阶段的模型对齐、数据安全,到部署阶段的实时监控、隐私保护,再到组织层面的风险管理和合规遵循,共同构筑一道立体的、纵深的安全防线。
希望以上信息能帮助到你!