大模型(LLM)输入风险及安全保障机制

大模型(LLM)的安全保障涉及从开发到部署的各个环节。这包括应对数据投毒越狱攻击等安全风险,并需要技术手段、管理流程和标准规范共同作用。
在这里插入图片描述

下面表格汇总了其主要安全风险、受影响环节及潜在影响,帮你快速建立整体认识:

安全风险简要描述主要受影响环节潜在影响
数据投毒训练数据被恶意污染,植入偏见或后门模型训练阶段模型输出带有偏见、生成不安全代码或泄露敏感信息
越狱攻击通过特定提示词绕过模型安全机制模型推理阶段模型生成不当内容、泄露隐私或执行恶意操作
提示词注入通过精心构造的输入误导模型行为模型推理阶段模型被操控进行未授权操作、数据泄露
模型窃取通过API查询等方式窃取模型参数或功能模型部署与服务阶段知识产权损失、模型被复制滥用
成员推断攻击判断特定数据是否用于模型训练模型训练与部署阶段训练数据隐私泄露
对抗性样本对输入添加难以察觉的扰动,导致模型错误分类或输出模型推理阶段模型判断被干扰,系统可靠性下降
AI智能体滥用利用AI智能体的自动化能力进行大规模恶意操作模型应用与集成阶段自动化攻击、数据批量泄露、系统被持续控制

🛡️ 大模型安全的技术保障

大模型的安全需要“技管并重”。下面介绍一些关键的技术手段:

  1. 强化训练数据安全:训练数据的质量直接影响模型的安全性。需要对数据进行清晰识别和过滤,并控制数据来源,以防止“数据投毒”和偏见注入。
  2. 改进模型对齐技术:在模型训练阶段,通过监督微调(SFT)从人类反馈中进行强化学习(RLHF) 等技术,使模型的行为与人类价值观和安全性目标保持一致。
  3. 实施运行时监控与防护
    • 输入/输出过滤与审核:对用户输入和模型生成的内容进行实时检测,过滤有害、敏感或不合规的内容。例如,Google Cloud 的 Security Command Center 提供了 Sensitive Data Protection 功能来识别和打码机密信息。
    • 实时检测与响应:监控模型的异常行为,如突然生成大量输出、频繁访问敏感接口等,并及时触发防护机制。Google 的 Model Armor 功能可以筛查 AI 智能体、工具和 MCP 服务器之间的交互,降低提示词注入和工具中毒的风险。
  4. 采用隐私保护技术
    • 机密计算:使用 可信执行环境(TEE) 等硬件安全技术保护模型和数据的隐私。例如,TEE+Legacy GPU 混合算力方案将模型的轻量层计算纳入 TEE 可信域保护,屏蔽来自主机的特权访问,从而阻断模型窃取、Prompt 窃取等可能的攻击。
    • 联邦学习:允许模型在本地数据上训练,只共享参数更新,避免原始数据集中,减少隐私泄露风险。
  5. 保障应用与集成安全
    • 对 AI 智能体实施严格的身份认证、权限控制和操作审计,防止其被恶意利用或越权操作。
    • 在使用 检索增强生成(RAG) 时,确保外部知识库的来源可靠,并防范“知识库投毒”攻击。国防科技大学的研究团队提出了 CodeGuarder 框架,通过向模型注入安全知识来防御此类攻击。

📜 遵循标准与最佳实践

遵循国内外权威标准与框架,能系统性地提升大模型安全保障水平:

  1. 国际标准与框架
    • NIST AI RMF(人工智能风险管理框架):提供了管理AI风险的可操作指南,强调衡量和管理AI系统的可信度。
    • OWASP AI Security & Privacy Guide:提供了详尽的AI应用安全和隐私检查清单。
  2. 国内标准与法规
    • 《人工智能计算平台安全框架》(GB/T 45958-2025):我国发布的国家标准,旨在建立AI计算平台安全框架,包括安全功能、安全机制、安全模块和服务接口。
    • 欧盟《人工智能法》:采用了基于风险的分级监管模式,将AI系统划分为不同风险等级并施以相应监管要求。

🏢 加强组织安全治理在这里插入图片描述

技术手段需与组织治理相结合,才能构筑完整的大模型安全防线:

  1. 全面的风险管理:将大模型安全纳入企业整体信息安全风险管理体系,定期进行风险评估和审计。
  2. 贯穿生命周期的安全:将安全考量融入模型设计、开发、测试、部署、运维的每一个环节
  3. 人员培训与意识提升:对开发、测试、运维等相关人员进行大模型安全风险和安全实践的培训。
  4. 供应链安全:对第三方模型、数据集、软件库、API服务等进行安全评估,确保供应链安全可靠。

💡 给你的实用建议

  • 确立“安全左移”原则:在模型开发的早期阶段就引入安全考量,而非事后补救。
  • 采用纵深防御策略:不要依赖单一安全措施,而是构建多层、冗余的防御体系。
  • 定期进行“红队测试”:主动模拟攻击者的技术和方法,寻找系统的安全漏洞。
  • 保持警惕与持续学习:大模型安全威胁日新月异,需持续关注最新安全动态和漏洞信息,并及时调整安全策略。

💎 总结

保障大模型安全是一个需要多方协同、持续演进的系统工程。它需要我们将技术方案标准规范组织治理有机结合,从开发阶段的模型对齐、数据安全,到部署阶段的实时监控、隐私保护,再到组织层面的风险管理和合规遵循,共同构筑一道立体的、纵深的安全防线。

希望以上信息能帮助到你!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值