用LangGraph、 Ollama,构建个人的 AI Agent

如果你还记得今年的 Google I/O大会,你肯定注意到了他们今年发布的 Astra,一个人工智能体(AI Agent)。事实上,目前最新的 GPT-4o 也是个 AI Agent。

现在各大科技公司正在投入巨额资金来创建人工智能体(AI Agent),他们的研究工作可能会带给我们几十年以来一直追寻的那种实用且可以自由互动的人工智能。包括Sam Altman在内的许多专家都表示,AI Agent 已成为下一个大热门方向。

接下来,我们聊聊什么是 AI Agent,以及如何创建一个基本的人工智能体。我们将会用到LangGraph和Ollama这两个可以简化本地人工智能体构建的强大工具。听我们讲完,你将全面了解如何利用这些技术创建适合你特定需求的高效人工智能体。

什么是人工智能体(AI Agent)?

事实上,AI Agent 的研究还处于早期阶段,该领域还没有明确的定义。但是 Astra 和 GPT-4o 已经可以成为一个很好的早期示例了。NVIDIA 高级研究员、AI Agent 项目负责人 Jim Fan 表示我们距离出现一个有实体的 AI Agent 或者说以 ChatGPT 作为内核的机器人,还有大约 3 年的时间。如果用他话来解释什么是 AI Agent,简单来说,AI Agent 就是能够在动态世界中自主决策的 AI 模型和算法。

严格意义上讲,人工智能体是感知环境并采取行动以实现特定目标或目的的软件或系统。这些AI Agent可以是简单的算法,也可以是能够进行复杂操作的复杂系统。以下是人工智能体的一些特点:

  1. 感知:人工智能体使用传感器或输入机制来感知环境。这可能涉及从摄像头、麦克风或其他传感器等各种来源收集数据。
  2. 推理:人工智能体接收信息并使用算法和模型来处理和解释数据。这一步包括理解模式、做出预测或产生反应。
  3. 决策:人工智能体会根据自己的感知和推理来决定行动或产出。这些决策旨在实现其程序或学习过程中确定的特定目标或目的。此外,人工智能体将更多地充当助手,而不是取代人类。
  4. 行动:人工智能体根据自己的决定执行行动。这可能涉及现实世界中的物理行动(如移动机械臂)或数字环境中的虚拟行动(如在应用程序中进行推荐)。

医疗保健系统是人工智能体落地应用的一个很合适的领域,它可以分析来自不同病人的不同数据,如医疗记录、测试结果和实时监控设备。然后,这些人工智能体利用这些数据可以帮助做出判断和决策,例如预测病人患上某种特定疾病的可能性,或根据病人的病史和当前健康状况推荐个性化的治疗方案。例如,医疗保健领域的人工智能体可以通过分析医学影像数据中的细微信息帮助医生提早诊断疾病,或根据实时生理数据,建议调整药物剂量。

人工智能体不仅提高了医疗诊断的准确性,还能提供个性化的治疗方案,提高整体医疗质量。除了医疗系统以外,还有很多人工智能体适合的场景和行业,比如游戏。

Fan 所在的团队在热门游戏 Minecraft 中开发了一个名为MineDojo的 AI Agent。利用从互联网收集的大量数据,Fan 的 AI Agent 能够学习新技能和新任务,从而自由探索游戏世界,并完成一些复杂的任务,例如用栅栏围住动物或将熔岩倒入桶里。开放世界游戏可能是 AI Agent 步入现实世界的前一站,因为它给了 AI Agent 了解物理、推理和常识的训练场。

一篇普林斯顿大学的论文表示,人工智能代理往往具有三种不同的特征。如果人工智能系统能够在复杂环境中无需指令就能实现比较

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值