Open3D点云配准介绍-点云之间进行配准

Open3D点云配准介绍-点云之间进行配准

点云之间进行配准

两块点云进行配准

API接口

# API官方介绍:
def registration_icp(source, target, max_correspondence_distance, init, *args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__ 
    """
    registration_icp(source, target, max_correspondence_distance, init=(with default value), estimation_method=TransformationEstimationPointToPoint without scaling., criteria=ICPConvergenceCriteria class with relative_fitness=1.000000e-06, relative_rmse=1.000000e-06, and max_iteration=30)
    Function for ICP registration
    
    Args:
        source (open3d.geometry.PointCloud): 原点云.
        target (open3d.geometry.PointCloud): 目标点云.
        max_correspondence_distance (float): 最大通信点对距离.
        init (numpy.ndarray[numpy.float64[4, 4]], optional): 初始估计变换矩阵 
        默认值:    
            array([[1., 0., 0., 0.],
            [0., 1., 0., 0.],
            [0., 0., 1., 0.],
            [0., 0., 0., 1.]])
        estimation_method (open3d.pipelines.registration.TransformationEstimation, optional, default=TransformationEstimationPointToPoint without scaling.):配准计算方法. 
        One of (``TransformationEstimationPointToPoint, TransformationEstimationPointToPlane` TransformationEstimationForGeneralizedICP, TransformationEstimationForColoredICP)
        criteria (open3d.pipelines.registration.ICPConvergenceCriteria, optional, default=ICPConvergenceCriteria class with relative_fitness=1.000000e-06, relative_rmse=1.000000e-06, and max_iteration=30): Convergence criteria
    
    Returns:
        open3d.pipelines.registration.RegistrationResult
    """
    pass
    

案例

# 点对点配准
import copy
import numpy as np
from open3d.cpu.pybind.pipelines import *
from open3d.cpu.pybind import io, geometry, visualization


def draw_registration_result_original_color(source, target, transformation, show_coord=False, coord_length=200):
    """
    :param source:
    :param target:
    :param transformation:
    :param show_coord: 是否显示坐标轴网格
    """
    source_temp = copy.deepcopy(source)
    source_temp.transform(transformation)

    geomes = [source_temp, target]

    if show_coord:
        # 坐标系网格
        mesh = geometry.TriangleMesh().create_coordinate_frame(size=coord_length)
        geomes.append(mesh)

    visualization.draw_geometries(geomes,
                                      point_show_normal=False,
                                      mesh_show_wireframe=True,
                                      )
    pass


if __name__ == '__main__':
    # 原点云,要被进行矩阵变换的点云
    pcd_source = io.read_point_cloud(f'./pcd_source.ply')
    # 目标点云,希望变换到该点云位置的点云
    pcd_target = io.read_point_cloud(f'./pcd_target.ply')
    # 该参数根据具体点云特征进行适当变更,如果值太小两点云会无法重合!
    max_correspondence_distance = 1000
    # 初始变换矩阵, 如果配准之前知道大概的变换矩阵,传入后可加快点云配准速度和成功率!
    init = np.identity(4)

    # 调用配准接口,得到配准结果
    result_icp: registration.RegistrationResult = registration.registration_icp(
        pcd_source, pcd_target,
        max_correspondence_distance, init,
        registration.TransformationEstimationPointToPoint(),
        registration.ICPConvergenceCriteria(relative_fitness=1e-6,
                                            relative_rmse=1e-8,
                                            max_iteration=10000))

    # 获取变换矩阵
    transformation = result_icp.transformation
    print(result_icp)
    
    # 给点云上色
    pcd_source.paint_uniform_color([1, 0.706, 0])  # source 为黄色
    pcd_target.paint_uniform_color([0, 0.651, 0.929])  # target 为蓝色

    # 显示
    draw_registration_result_original_color(pcd_source, pcd_target, transformation)
    pass

注意事项

最终的配准结果 result_icp 是将 pcd_source 变换到 pcd_target 的变换矩阵!别搞反了,这是新手很容易犯的错误!

### Open3D 点云精确方法 #### ICP算法简介 点云是三维重建和计算机视觉领域的重要任务,旨在将多个点云数据集对齐至同一坐标系中。Iterative Closest Point (ICP) 是一种广泛使用的迭代最近点匹配算法,能够实现高精度的点云[^1]。 #### 使用Open3D库执行ICP的具体过程 为了利用Open3D进行ICP操作,可以按照以下方式编写Python脚本: ```python import open3d as o3d def icp_registration(source_cloud, target_cloud, threshold, trans_init): # 执行ICP reg_p2p = o3d.pipelines.registration.registration_icp( source_cloud, target_cloud, threshold, trans_init, o3d.pipelines.registration.TransformationEstimationPointToPoint() ) return reg_p2p.transformation ``` 此函数接收源点云`source_cloud`、目标点云`target_cloud`以及初始变换矩阵`trans_init`作为输入参数,并返回最终计算所得的最佳变换矩阵。 #### SVD算法详解 对于更复杂的场景,SVD(奇异值分解)可用于求解最优旋转和平移矩阵,从而最小化两组对应点间的欧氏距离之平方和。该技术特别适用于已知部分或全部对应关系的情况,在此基础上进一步优化效果[^3]。 #### 结合其他预处理步骤提升确性 除了上述提到的方法外,还可以考虑先通过PCA或其他粗手段初步调整姿态差异较大的点云位置后再应用精细流程;或者采用基于特征描述子如FPFH来增强鲁棒性和效率,进而提高整体质量[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农菌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值