「TJOI / HEOI2016」排序-二分+线段树

本文介绍了一种处理全排列后经过多次局部排序操作的算法。通过二分查找与区间覆盖技术,快速定位特定位置上的数值。适用于竞赛编程及数据处理场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

给出一个11n的全排列,现对于这个全排列进行mm次局部排序操作。

  • (0,l,r)表示将区间[l,r][l,r]的数字升序排序。
    • (1,l,r)(1,l,r)表示将区间[l,r][l,r]的数字降序排序。

    排序后询问第qq位置上的数字。

    Solution

    考虑每次只询问一个位置上的数字,可以二分数字。把mid的值置为00,>mid的值置为00

    只有0,1的排序很简单,每次统计有多少0,10,1,然后做区间覆盖即可。

    根据qq位置上的值确定答案与当前二分值的关系。

    #include <bits/stdc++.h>
    using namespace std;
    
    const int maxn = 1005;
    
    int n, m, q;
    int a[maxn], op[maxn], l[maxn], r[maxn];
    
    inline int gi()
    {
        char c = getchar();
        while (c < '0' || c > '9') c = getchar();
        int sum = 0;
        while ('0' <= c && c <= '9') sum = sum * 10 + c - 48, c = getchar();
        return sum;
    }
    
    #define lch (s << 1)
    #define rch (s << 1 | 1)
    #define mid ((l + r) >> 1)
    
    int sum[maxn * 4], lazy[maxn * 4];
    
    void build(int s, int l, int r, int x)
    {
        lazy[s] = -1;
        if (l == r) {
            sum[s] = a[l] > x;
            return ;
        }
        build(lch, l, mid, x);
        build(rch, mid + 1, r, x);
        sum[s] = sum[lch] + sum[rch];
    }
    
    int query(int s, int l, int r, int x, int y)
    {
        if (x <= l && r <= y) return sum[s];
        if (~lazy[s]) {
            sum[lch] = (mid - l + 1) * lazy[s]; lazy[lch] = lazy[s];
            sum[rch] = (r - mid) * lazy[s]; lazy[rch] = lazy[s];
            lazy[s] = -1;
        }
        int res = 0;
        if (x <= mid) res += query(lch, l, mid, x, y);
        if (mid < y) res += query(rch, mid + 1, r, x, y);
        return res;
    }
    
    void cover(int s, int l, int r, int x, int y, int v)
    {
        if (x <= l && r <= y) {
            sum[s] = (r - l + 1) * v; lazy[s] = v;
            return;
        }
        if (~lazy[s]) {
            sum[lch] = (mid - l + 1) * lazy[s]; lazy[lch] = lazy[s];
            sum[rch] = (r - mid) * lazy[s]; lazy[rch] = lazy[s];
            lazy[s] = -1;
        }
        if (x <= mid) cover(lch, l, mid, x, y, v);
        if (mid < y) cover(rch, mid + 1, r, x, y, v);
        sum[s] = sum[lch] + sum[rch];
    }
    
    bool judge(int x)
    {
        build(1, 1, n, x);
        for (int i = 1, sum; i <= m; ++i) {
            if (!op[i]) {
                sum = r[i] - l[i] + 1 - query(1, 1, n, l[i], r[i]);
                if (sum) cover(1, 1, n, l[i], l[i] + sum - 1, 0);
                if (sum < r[i] - l[i] + 1) cover(1, 1, n, l[i] + sum, r[i], 1);
            } else {
                sum = query(1, 1, n, l[i], r[i]);
                if (sum) cover(1, 1, n, l[i], l[i] + sum - 1, 1);
                if (sum < r[i] - l[i] + 1) cover(1, 1, n, l[i] + sum, r[i], 0);
            }
        }
        return query(1, 1, n, q, q);
    }
    
    int main()
    {
        freopen("sort.in", "r", stdin);
        freopen("sort.out", "w", stdout);
    
        n = gi(); m = gi();
        for (int i = 1; i <= n; ++i) a[i] = gi();
        for (int i = 1; i <= m; ++i)
            op[i] = gi(), l[i] = gi(), r[i] = gi();
        q = gi();
    
        int l = 1, r = n;
        while (l < r) {
            if (judge(mid)) l = mid + 1;
            else r = mid;
        }
    
        printf("%d\n", l);
    
        return 0;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值