Cut&Run与Cut&Tag

Cut&Run(Cleavage Under Targets & Release Using Nuclease)和Cut&Tag(Cleavage Under Targets & Tagmentation)是两种用于研究基因组蛋白-DNA相互作用的技术。它们以高灵敏度和低背景噪声著称,成为表观遗传学研究中的重要工具。

图片

以下是对两种技术的介绍:


Cut&Run技术

1. 技术概述

Cut&Run是一种基于抗体的技术,用于研究转录因子、核小体及其他染色质相关蛋白与DNA的结合。它通过将蛋白结合的特定位点切割下来,释放与其相连的DNA片段,并随后测序来确定结合位点。


2. 技术流程

  1. 样本制备

    • 从细胞或组织中分离细胞核,或者直接使用固定的完整细胞。

    • 使用玻片或磁珠固定细胞核,确保实验过程中样本稳定性。

  2. 抗体结合

    • 添加针对目标蛋白的特异性抗体,与目标蛋白结合。

    • 抗体通常能够精确定位靶蛋白。

  3. 蛋白A/G融合核酸酶结合

    • 引入融合蛋白(如蛋白A或G与微球菌核酸酶的融合体),其能够通过抗体与目标蛋白结合。

  4. 核酸酶活化与切割

    • 添加低浓度的Ca²⁺激活核酸酶,使其在靶点附近切割DNA。

    • 仅切割与目标蛋白结合的DNA片段,减少非特异性背景。

  5. 释放与回收DNA

    • 通过温和裂解或离心分离,将切割下来的DNA片段释放到上清中。

    • 回收DNA用于下游测序。

  6. 高通量测序与分析

    • 构建文库后,通过Illumina等平台进行高通量测序。

    • 使用生物信息学工具识别蛋白结合位点。


3. 技术特点

  • 灵敏度高

    :由于背景噪声极低,Cut&Run技术能检测到稀有的蛋白-DNA相互作用。

  • 操作简单

    :不需要大量的细胞,也无需复杂的核酸免疫沉淀步骤。

  • 背景噪声低

    :由于反应在细胞核中原位完成,未结合的核酸酶被轻松洗脱。

  • 需求样本量少

    :适用于小数量或珍贵样本。


4. 应用

  • 研究转录因子结合

    :精准定位转录因子在基因组中的结合位点。

  • 分析表观修饰

    :研究组蛋白修饰标记,如H3K27me3、H3K4me3。

  • 染色质结构研究

    :探索染色质结合蛋白的分布规律。

  • 研究动态变化

    :监测细胞状态或外界刺激对蛋白-DNA结合的影响。


Cut&Tag技术

1. 技术概述

Cut&Tag是Cut&Run的升级版本,用于检测DNA结合蛋白和表观遗传修饰。它结合了转座酶技术(Tn5),直接在目标DNA结合位点上进行文库制备,进一步简化了流程和提升了效率。


2. 技术流程

  1. 样本制备

    • 与Cut&Run类似,细胞固定后提取细胞核,或直接使用完整细胞。

  2. 抗体结合

    • 加入针对目标蛋白的抗体,使其结合到目标蛋白。

  3. 转座酶结合

    • 添加融合转座酶(Tn5)和蛋白A或G,形成复合体。

    • 转座酶通过抗体被精准招募到目标蛋白附近。

  4. 文库生成

    • 在目标位点,Tn5插入并标记DNA片段,同时添加测序接头。

    • 这一步直接生成可用于测序的文库,省略了传统建库步骤。

  5. 高通量测序与分析

    • 直接对生成的文库进行测序,识别目标蛋白的结合区域。


3. 技术特点

  • 极高灵敏度

    :能够从少量细胞或单细胞样本中捕获蛋白-DNA结合信息。

  • 操作简化

    :通过整合转座酶,直接完成文库构建,大幅减少实验时间。

  • 样本需求少

    :对稀有细胞群体或单细胞样本友好。

  • 适配多种应用

    :兼容多种蛋白-DNA研究需求,包括组蛋白修饰、转录因子结合等。


4. 应用

  • 研究染色质开放性

    :通过分析组蛋白修饰标记(如H3K27ac)推断染色质活性。

  • 转录因子研究

    :识别转录因子的结合位点及其调控网络。

  • 单细胞分析

    :Cut&Tag能够在单细胞水平上解析染色质状态。

  • 开发新的表观遗传标记

    :研究未知蛋白或新表观修饰的功能。


Cut&Run和Cut&Tag的对比

特性Cut&RunCut&Tag
核心机制

核酸酶切割并释放DNA

转座酶标记并插入测序接头

背景噪声

较低

更低

样本需求

几千个细胞

单细胞或极少量细胞

实验时间

中等

更快(一步生成文库)

适用范围

大部分蛋白-DNA相互作用研究

高通量单细胞分析

成本

较低

较高


两者的局限性

  1. 抗体质量依赖性

    • 两种技术都需要高质量、特异性强的抗体。抗体性能不足可能导致信号不佳或非特异性绑定。

  2. 数据分析复杂性

    • 数据处理和分析需要高水平的生物信息学工具,特别是在处理大规模单细胞数据时。

  3. 对细胞固定的敏感性

    • 固定步骤可能影响蛋白的天然结合状态,需优化实验条件。


未来发展方向

  1. 与其他组学技术整合

    • 如结合RNA测序(RNA-Seq)或空间组学技术,实现多维表观遗传分析。

  2. 单细胞水平优化

    • 提高灵敏度和分辨率,进一步降低对细胞数量的需求。

  3. 新型标记方法

    • 开发更高效的转座酶或核酸酶,提高DNA标记效率。

  4. 高通量自动化

    • 通过微流控和机器人技术实现高通量的表观遗传学研究。


Cut&Run和Cut&Tag以其高灵敏度、低背景和灵活性,推动了表观遗传学研究的发展,为解析基因调控网络和染色质状态提供了强有力的工具。

生信大白记第48记,就到这里,关注我!

下一记,持续更新学习生物信息学的内容!

生信大白记邮箱账号:shengxindabaiji@163.com

生信大白记简书账号:生信大白记

生信大白记CSDN账号:生信大白记

生信大白记微信公众号:生信大白记

加入生信大白记交流群938339543

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值