单细胞转录组(scRNA-seq)与空间转录组(ST)的区别

单细胞转录组测序(Single-cell RNA sequencing, scRNA-seq)和空间转录组测序(Spatial Transcriptomics, ST)都是解析基因表达的重要技术,但它们在技术原理、分辨率、数据特性、应用场景等方面存在明显区别。

图片

下面从多个维度详细对比这两种技术。


1. 技术原理

🔹 单细胞转录组(scRNA-seq)

  • 核心原理

    :将细胞分离成单个细胞,通过高通量测序技术检测每个细胞的mRNA表达情况。

  • 关键步骤

    1. 组织解离

      :使用酶或机械方法分离单个细胞。

    2. 细胞捕获

      :利用微流控芯片(如 10x Genomics)、微滴(Drop-seq)、微孔(SMART-seq)等技术对单个细胞进行分离。

    3. mRNA 提取与扩增

      :使用逆转录和PCR技术扩增RNA。

    4. 文库构建 & 高通量测序

      :将cDNA文库进行Illumina测序。

    5. 数据分析

      :利用降维(PCA/t-SNE/UMAP)、聚类、细胞类型注释等方法解析细胞异质性。


🔹 空间转录组(ST)

  • 核心原理

    :在组织切片上原位捕获 mRNA,并保留空间信息,通过测序或荧光成像解析基因表达模式。

  • 关键步骤

    • 条形码探针法(Visium, Slide-seq)

      :玻片上布满条形码探针,mRNA 与其结合,并进行测序。

    • 原位测序法(MERFISH, seqFISH)

      :荧光标记RNA分子,通过显微成像获取表达数据。

    1. 组织切片

      :组织样本固定后切片,铺在玻片或特殊基质上。

    2. mRNA 捕获

    3. 基因表达检测

      :进行高通量测序或荧光成像。

    4. 数据分析

      :空间基因表达重建、区域聚类、细胞类型鉴定、空间相互作用分析等。


2. 分辨率对比

维度单细胞转录组(scRNA-seq)空间转录组(ST)
单细胞分辨率

✅ 能达到单细胞或亚细胞水平

❌ 传统ST技术难以达到单细胞(除MERFISH、seqFISH等)

空间信息

❌ 丢失空间位置信息

✅ 可解析基因的空间分布

细胞类型解析

✅ 能精准区分细胞类型

⚠ 依赖组织区域划分,难以直接分离单个细胞

🔹 单细胞转录组

  • 优势

    :可检测单个细胞基因表达,适用于研究细胞异质性、稀有细胞类型、细胞命运轨迹等。

  • 劣势

    :缺乏组织空间信息,细胞分离过程可能影响细胞状态。

🔹 空间转录组

  • 优势

    :保留细胞在组织中的空间信息,适用于研究组织结构、细胞间相互作用、发育过程等。

  • 劣势

    :通常无法达到单细胞分辨率,部分技术(如Visium)每个spot可能包含多个细胞。


3. 数据特性

维度单细胞转录组(scRNA-seq)空间转录组(ST)
数据类型

单细胞表达矩阵

空间表达矩阵

分辨率

单细胞级

细胞簇(spot)或高分辨率(MERFISH)

基因覆盖度

依赖文库策略(10x 低覆盖,SMART-seq 高覆盖)

受捕获探针或测序深度限制

噪声水平

高(掉落事件、多重检测)

低(组织切片减少细胞丢失)

样本通量

一次可检测数万细胞

受玻片面积、探针数量限制

单细胞数据:更关注细胞异质性,适合细胞亚群分析。
空间数据:强调基因表达的空间模式,适合研究组织微环境。


4. 主要技术平台对比

技术单细胞转录组空间转录组
10x Genomics

Chromium (scRNA-seq)

Visium

Smart-seq

高精度 scRNA-seq

❌(无空间分辨率)

Drop-seq

微滴式单细胞测序

Slide-seq

高分辨率 ST

MERFISH

原位测序 ST

seqFISH+

超高分辨率 ST

Stereo-seq

超高分辨率 ST


5. 适用研究方向

研究领域单细胞转录组(scRNA-seq)空间转录组(ST)
细胞类型鉴定

✅ 解析异质性

⚠ 依赖区域划分

肿瘤微环境

✅ 识别肿瘤亚群

✅ 研究细胞空间分布

胚胎发育

✅ 研究细胞分化

✅ 研究组织结构变化

神经科学

✅ 解析神经元亚群

✅ 研究脑区分布

免疫学

✅ 解析免疫细胞谱系

✅ 研究免疫细胞浸润

组织病理学

❌ 丢失空间信息

✅ 结合病理切片


6. 单细胞转录组 & 空间转录组的整合分析

为了同时利用 scRNA-seq 的细胞精度 和 ST 的空间信息,可以进行数据整合:

  1. 使用 scRNA-seq 识别细胞类型

  2. 将单细胞数据映射到空间数据

    ,推测不同细胞在组织中的分布。

  3. 分析空间基因表达模式

    ,研究细胞间相互作用。

常用整合工具:

  • Seurat

    (单细胞 + 空间数据映射)

  • SPOTlight

    (基于 NMF 解析空间细胞组成)

  • Cell2location

    (贝叶斯模型推测细胞分布)

  • Tangram

    (机器学习模型进行单细胞-空间映射)


7. 总结

对比维度单细胞转录组(scRNA-seq)空间转录组(ST)
分辨率

单细胞级

细胞簇(spot)或超高分辨率

空间信息

❌ 无

✅ 有

细胞异质性

✅ 精确识别

⚠ 依赖区域划分

数据降噪

⚠ 需要更强滤噪

✅ 噪声相对低

适用场景

研究细胞类型、发育、癌症

研究组织结构、细胞间通讯

最佳实践

  • 想研究细胞类型?

     用 scRNA-seq

  • 想研究组织结构?

     用 ST

  • 想结合两者?

     用 scRNA + ST 整合分析

未来,单细胞 & 空间转录组的结合 将成为趋势,推动更深入的生物学研究! 🚀

生信大白记第57记,就到这里,关注我!

下一记,持续更新学习生物信息学的内容!

### 空间转录组测序的技术原理 空间转录组测序是一种能够保留基因表达空间位置信息的高通量技术,其主要目标是揭示基因表达的空间分布模式以及组织微环境中的复杂相互作用。这项技术的核心在于通过特定的方法捕获RNA分子的同时记录它们的位置信息[^1]。 常见的技术平台之一是由10x Genomics开发的空间转录组解决方案,该方案利用显微镜下的条形码阵列来标记不同区域的mRNA分子,从而实现对组织切片上基因表达的空间解析能力。 另一种值得注意的产品来自NanoString Technologies的GeoMx Digital Spatial Profiler,它能够在单一实验中同时检测多个蛋白质上千种RNA靶标,适用于多种类型的生物样本分析[^5]。 --- ### 数据分析流程 对于空间转录组数据的分析通常涉及以下几个方面: #### 1. **质量控制** 在数据分析之前,需要对原始数据进行严格的质量评估,包括去除低质量读取、校正背景噪声等操作[^3]。 #### 2. **功能富集分析** 为了理解差异表达基因的功能意义,可以通过Gene Ontology(GO)Kyoto Encyclopedia of Genes and Genomes(KEGG)数据库来进行生物学过程注释信号通路分析[^2]。 #### 3. **邻域分析** 空间转录组的一个重要特点是支持基于细胞或分子层面的邻域关系研究。例如,可以构建分子niche矩阵或者细胞niche矩阵用于描述局部区域内不同类型细胞之间的交互情况[^4]。这种方法有助于识别新的细胞群体及其潜在的作用机制。 #### 4. **可视化解释** 最终的结果往往借助于高级统计模型机器学习算法呈现出来,并配合直观易懂的图形展示形式帮助研究人员更好地理解验证假设。 --- ### 常见工具 Seurat是一个广泛应用于单细胞空间转录组数据分析的强大R包,提供了从预处理到下游探索的一整套解决方案。除此之外还有其他专门针对空间结构特征设计的软件如BANKSY等可用于进一步挖掘复杂的生态位信息。 --- ### 生物信息学视角的应用价值 从生物信息学角度来看,空间转录组不仅扩展了传统转录组学的研究范畴,还为疾病诊断标志物发现、药物靶点筛选等领域带来了全新的可能性。通过对正常状态病理条件下基因调控网络变化规律的认识,科学家们有望找到更多有效的治疗策略。 ```python import scanpy as sc adata = sc.read_h5ad('spatial_data.h5ad') # 加载空间转录组数据 sc.pp.filter_genes(adata, min_cells=3) # 过滤掉表达较少的基因 sc.tl.pca(adata) # 执行PCA降维 sc.pl.spatial(adata, color='gene_of_interest') # 可视化指定基因的空间表达趋势 ``` 上述代码片段展示了如何使用Scanpy库加载并初步处理一份标准的空间转录组数据文件,接着进行了简单的过滤步骤之后再做主成分分析最后以热图的形式展现某个感兴趣基因在整个样品内的分布状况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值