数学
- 傅里叶级数:任何周期函数分解成一堆正弦与余弦函数。
- 傅里叶变换:非周期函数分解成一堆正弦与余弦函数(带复数的多项式)。
- 离散傅里叶变换
概率方面的知识
- 极大似然估计
- EM算法感性认知
- EM算法,可能还是不太好理解,这个算法就是比较难。简单来说EM算法就是通过先假设模型参数,然后算出概率,再根据概率用极大似然估计优化模型参数,重复上述步骤,直到收敛。
- 先验概率和后验概率
- 先验分布、后验分布、似然函数
- 核密度估计,用来估计未知的密度函数,属于非参数检验方法之一
- KL散度(用来衡量两个概率分布之间的差异或相似性的指标)
优化算法
数据集
- SMOTE算法,过采样,处理不平衡数据
- 数据增强,基于现有数据,生成一些新数据
- 如何解决兼具类不平衡,类别较多的多分类,样本不足的问题?
特征工程
- PCA
- KPCA
- relief及reliefF算法,特征选择
- 用遗传算法做特征选择
- t-SNE(降维用的)
聚类
机器学习算法 / 模型
- 随机森林,随机森林2
- 梯度提升树1,梯度提升树2
- XGBoost1,XGBoost2
- 磷虾群算法(KH算法)
- 特征递归消除(RFE) 、RFECV(交叉验证的特征递归消除)
- SVM-RFE
- 交叉验证
- 贝叶斯网络1、贝叶斯网络2
- 多层感知机,其实就是人工神经网络
- 极限学习机
- stacking集成学习