已知 nn 个整数 x_1,x_2,\cdots,x_nx1,x2,⋯,xn,以及一个整数 kk(k<nk<n)。从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:
3+7+12=22
3+7+19=29
7+12+19=38
3+12+19=34
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=29
输入格式
输入格式为:n,k(1≤n≤20,k<n)。
x1,x2,⋯,xn(1≤xi≤5000000)。
输出格式
输出格式为:一个整数(满足条件的种数)。
Sample Input
4 3 3 7 12 19
Sample Output
1
#include <iostream>
#include <cmath>
using namespace std;
int num[20],n,m,sum,cnt;
bool isprime(int n)
{
int t = sqrt(n),flag = 1;
for(int i = 2;i <= t;i++){
if(n%i == 0){
flag = 0;
break;
}
}
return flag;
}
void Find(int b,int k)
{
if(k == m){
if(isprime(sum))
cnt++;
return;
}
for(int i = b;i < n;i++){
sum += num[i];
Find(i+1,k+1);
sum -= num[i];
}
}
int main()
{
cin >> n >> m;
for(int i = 0;i < n;i++)
cin >> num[i];
Find(0,0);
cout << cnt;
return 0;
}