给你一个二进制数组 nums ,你需要从中删掉一个元素。请你在删掉元素的结果数组中,返回最长的且只包含 1 的非空子数组的长度。如果不存在这样的子数组,请返回 0 。
示例 1:
输入:nums = [1,1,0,1]
输出:3
解释:删掉位置 2 的数后,[1,1,1] 包含 3 个 1 。
示例 2:
输入:nums = [0,1,1,1,0,1,1,0,1]
输出:5
解释:删掉位置 4 的数字后,[0,1,1,1,1,1,0,1] 的最长全 1 子数组为 [1,1,1,1,1] 。
1 <= nums.length <= 105
nums[i] 要么是 0 要么是 1 。
解:
思路
维护一个连续是1的序列长cur,和它前一个连续1的长pre,初始0
当遇到0的时候,更新ans=max(ans, pre+cur)
看0后面是不是1
是1的话,pre=cur
是0或者到边界了,pre就不动
解题过程
比如0,1,1,0,1,0
找到第一个连续是1的窗口就是1,1,窗口大小cur=2,pre=0
遇到了0,更新ans=max(ans, pre+cur)
0的后面是1,所以更新pre=cur=2
下一个连续是1的窗口是1,遇到了0,0的后面是边界了,那就更新ans
不用重置pre=0,后面有需要会自动覆盖,比如可以试试这个1,1,1,0,1,1,0,0,1,1,1,1,0
class Solution {
public int longestSubarray(int[] nums) {
int pre=0, cur=0, ans=0;
int r=0, n=nums.length;
for(; r<n&&nums[r]==0; r++);
for(; r<n; r++){
if(nums[r]==1)
cur++;
else{
ans = Math.max(ans, pre+cur);
if(r+1<n && nums[r+1]==1)
pre = cur;
cur=0;
}
}
ans = Math.max(ans, pre+cur); // 最后一个是1
return cur==n? cur-1:ans; // 全是1的情况
}
}
时间复杂度:O(N)
空间复杂度:O(1)