pandas字符串处理及列转行

文章介绍了如何在Python的Pandas库中使用str函数对DataFrame进行各种字符串操作,如截取、分割、合并、替换、判断和格式化,以提取和处理数据中的信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

df1.loc[:,'前部']=df1['班级名称'].str.slice(0,15)
df1.loc[:,'大区']=df1['班级名称'].str.split('-').str[0]
df1.loc[:,'版本']=df1['班级名称'].str.split('-').str[1]
df1.loc[:,'进度']=df1['班级名称'].str.split('-').str[2]
df1.loc[:,'时间']=df1['班级名称'].str.split('-').str[3]
df1.loc[:,'时间1']=df1['时间'].str.split('(').str[0]
df1['id尾号']=df1['姓名id'].str.split('-',n=2).str[1].str.slice(0,6)

常规字符串截取处理

(编辑技巧:mac❀+数字2,设定为目录)

1、str.cat和指定字符串

df1.loc[:,'合并']=df1['大区'].str.cat(df1['版本'],sep='-').str.cat(df1['进度'],sep='-')

str.cat可以连接多列,并设定连接符

2、split按照指定字符分割

df1.loc[:,'大区']=df1['班级名称'].str.split('-').str[0]

df1['id尾号']=df1['姓名id'].str.split('-',n=2).str[1].str.slice(0,6)

以上为按‘-’分割某列,并取分割后的第一部分字符串

split('-',expand=True,n=1),expand默认是False,若设置为True则会将列表展开,变成多列,n是设置分列的次数,n=1则分割一次,成2部分

rsplit和split用法一致,只不过是从右边开始分列

3、partition按照指定字符进行分割,且只分割一次

df1.loc[:,'1']=df
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值