严格次短路问题(洛谷P2865题解,Dijkstra算法应用)

本文介绍了如何使用Dijkstra算法来解决一道图论问题——求解从起点到终点的严格次短路径。在详细解释思路时,提出了四种情况:更新最短路、跳过等于最短路、更新次短路以及跳过等于或长于次短路的情况。给出了相应的代码实现,并欢迎读者指正。

给出一道次短路的模板题,见洛谷P2865。

题目:

贝茜把家搬到了一个小农场,但她常常回到FJ的农场去拜访她的朋友。贝茜很喜欢路边的风景,不想那么快地结束她的旅途,于是她每次回农场,都会选择第二短的路径,而不象我们所习惯的那样,选择最短路。 贝茜所在的乡村有R(1<=R<=100,000)条双向道路,每条路都联结了所有的N(1<=N<=5000)个农场中的某两个。贝茜居住在农场1,她的朋友们居住在农场N(即贝茜每次旅行的目的地)。 贝茜选择的第二短的路径中,可以包含任何一条在最短路中出现的道路,并且,一条路可以重复走多次。当然咯,第二短路的长度必须严格大于最短路(可能有多条)的长度,但它的长度必须不大于所有除最短路外的路径的长度。

题目大意:求一条从起点到终点的严格次短路的长度。

 思路:既然最短路可以用Dijkstra算法解决,那么次短路同样考虑这个算法。与求最短路相比,求次短路需要同时维护最短路(为了判断次短路)和次短路。所以只需要在松弛时分情况考虑即可。

  • 情况1:当前路径比当前最短路短,更新最短路,把原来的最短路赋给次小路。
  • 情况2:等于最短路,直接跳过,因为要求的是严格次短路。
  • 情况3:比最短路长,比次短路短,更新次短路。
  • 情况4:等于或比次短路长,跳过。

总共这四种情况,程序中只需处理情况1,3即可。

代码如下

#include<bits/stdc++.h>
using namespace std;
#define int long long

struct node
{
	int to,w;
	bool operator <(const node &x)const
    {
        return x.w<w;
    }
};
vector<node>a[50005];
priority_queue<node>q;
int n,m,dis[50005][2],bj[50005],s;
void dij()
{
	dis[s][1]=0;//1是最短路,0是次短路 
	q.push(node{s,0});
	while(!q.empty())
	{
		node ovo=q.top();
		q.pop();
		int p=ovo.to,d=ovo.w;
		int l=a[p].size();
		if(ovo.w>dis[p][0])	continue;
		for(int j=0;j<l;j++)
		{
			int v=a[p][j].to;
			if(dis[v][1]>d+a[p][j].w)//情况1
			{
				dis[v][0]=dis[v][1];
				dis[v][1]=d+a[p][j].w;
				q.push(node{v,dis[v][1]});
			}
			if(dis[v][0]>d+a[p][j].w&&dis[v][1]<d+a[p][j].w)//情况2
			{
				dis[v][0]=d+a[p][j].w;
				q.push(node{v,dis[v][0]});
			}
		}
	}
	return;
}
signed main()
{
	cin>>n>>m;
	s=1;
	for(int i=1;i<=n;i++)	dis[i][1]=dis[i][0]=2147483647000;
	for(int i=1;i<=m;i++)
	{
		int x,y,l;
		cin>>x>>y>>l;
		node t1,t2;
		t1.to=y,t1.w=l,t2.to=x,t2.w=l;
		a[x].push_back(t1);
		a[y].push_back(t2);
	}
	dij();
	cout<<dis[n][0]<<endl;
	return 0;
}

如有错误求大佬们指出,感激不尽。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值