NLP中文情感分析模型开源项目及实现代码

98 篇文章 ¥59.90 ¥99.00
本文介绍了THUCTC、HFL-EMOTION和Bert-wwm-ext等中文情感分析的开源项目,提供了使用这些项目进行情感分析的代码示例,适用于社交媒体监测、舆情分析等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

情感分析是自然语言处理(NLP)领域中的一个重要任务,它旨在确定文本中表达的情感倾向,例如积极、消极或中性。在中文情感分析任务中,有几个开源项目提供了有效的模型和实现代码,使得我们能够进行情感分析的研究和应用开发。

在本文中,我们将介绍几个值得关注的开源项目,并提供相应的源代码示例,以帮助读者开始构建自己的中文情感分析模型。

  1. THUCTC
    THUCTC(清华大学中文文本分类工具包)是由清华大学自然语言处理与社会人文计算实验室开发的一个开源项目。它提供了一个基于深度学习的中文文本分类工具包,其中包括了情感分析任务。THUCTC使用了卷积神经网络(CNN)和长短期记忆网络(LSTM)等模型,并提供了预训练的中文情感分类模型。

以下是使用THUCTC进行中文情感分析的示例代码:

import thuctc

# 加载预训练模型
model = thuctc.thu_sentiment()

# 输入文本
text = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值