Pytorch官方教程学习笔记2:数据集与数据加载器

用于处理数据样本的代码可能会变得混乱且难以维护。理想情况下,我们希望将数据集代码与模型训练代码解耦,以提高可读性和模块化程度。PyTorch 提供了两个数据基础工具:torch.utils.data.DataLoadertorch.utils.data.Dataset,它们允许您使用预加载的数据集以及自定义的数据。Dataset 存储样本及其对应的标签,而 DataLoader 则为 Dataset 提供了一个可迭代对象,方便访问样本数据。

PyTorch 的领域库提供了许多预加载的数据集(如 FashionMNIST),这些数据集继承自 torch.utils.data.Dataset,并实现了特定数据的函数。它们可以用于快速构建和评估您的模型。

加载数据集

以下是如何从 TorchVision 加载 Fashion-MNIST 数据集的示例。Fashion-MNIST 是一个包含 Zalando 商品图像的数据集,由 60,000 个训练样本和 10,000 个测试样本组成。每个样本包含一个 28×28 的灰度图像及其在 10 个类别中的标签。

我们使用以下参数来加载 FashionMNIST 数据集:

  • root:存储训练/测试数据的路径。
  • train:指定是训练数据集还是测试数据集。
  • download=True:如果在 root 路径中数据不可用,则从互联网下载数据。
  • transformtarget_transform:指定特征和标签的转换。
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt


training_data = datasets.FashionMNIST(
    root="data",    #相对工程文件的地址
    train=True,    #训练集,所以该参数设置为True
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",    #相对工程文件的地址
    train=False,    #测试集,所以该参数设置为False
    download=True,
    transform=ToTensor()
)

文件结构:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值