step 1:训练模型(train the network)
训练样本是是从什么文风的文章截取的,这个模型在predict阶段就会生成什么样文风的文本。
1)准备training example pairs:(input_segment, target_character)。target_character是input_segment之后的character。例如,从一篇3000词的莎士比亚文章中截取training example pairs,设定input segment length = 30,stride = 3,那么能截取出约1000个(input_segment, target_character),因为stride意思是每次向后移动三个character,再截取下一个pair。
2)encoding:把input_segment用one-hot encoding方式编码成矩阵,size=length x vocabulary (=#unique tokens,字母,数字,标点,空格…), 把target编码成向量。
对于这个模型/任务,预测对象是character,vocab大小也就几十,所以不用word embedding来缩小每个character vector的长度。character-level tokenization不需要embedding,word-level tokenization需要。