Text Generation自动文本生成(LSTM实现)

step 1:训练模型(train the network)

训练样本是是从什么文风的文章截取的,这个模型在predict阶段就会生成什么样文风的文本。
在这里插入图片描述
1)准备training example pairs:(input_segment, target_character)。target_character是input_segment之后的character。例如,从一篇3000词的莎士比亚文章中截取training example pairs,设定input segment length = 30,stride = 3,那么能截取出约1000个(input_segment, target_character),因为stride意思是每次向后移动三个character,再截取下一个pair。
在这里插入图片描述

2)encoding:把input_segment用one-hot encoding方式编码成矩阵,size=length x vocabulary (=#unique tokens,字母,数字,标点,空格…), 把target编码成向量。
对于这个模型/任务,预测对象是character,vocab大小也就几十,所以不用word embedding来缩小每个character vector的长度。character-level tokenization不需要embedding,word-level tokenization需要。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值