算法工程师分析问题和解决问题的能力,以及落地能力

reference:
摘自机智的叉烧的知乎回答和微信推文
https://www.zhihu.com/people/ceng-guan-rong-72/answers
https://mp.weixin.qq.com/s/xdJcQZgHUeGjZLzxUAp36g

1. NLP二分类任务,为什么各种模型最后的训练结果(F1,ACC)都相差甚微(使用Glove词向量)?

1)分析问题:遇到问题首先,要知道症在哪,要知道的核心就在于你要足够理解病症问题,对于算法问题,大到看数据整体分布,看数据整体特点,小到看bad case情况,尝试去归因(这个是真的难,每个人看问题的角度不同)。
问自己几个问题:

  1. 什么场景,这个场景有什么特点。
  2. 训练集测试集数据量多少,正负样本比例多少。
  3. 训练集测试集本身的质量怎么样,准确率咋样。
  4. 分类句子长度分布怎么样,平均最长最短中位数。
  5. 目标准招是多少,现在多少,预期多少合理?
  6. 各个模型的bad case是什么样的,有什么特点,特点的占比怎样。
  7. 甚微是多甚微,那对错,各个模型有没有什么优势和劣势?

2)从知识库中挑选方法/模型:平时,要注意积累自己手里的方法,同时也要足够理解这些方法,因地制宜的一个前提是得有足够的方法供你选,第二个前提是知道方法的优缺点,才知道怎么选。说白了,就是两个词,一个是积累,另一个是理解。

然后就是找到合适的方法解决这个问题了。举个例子,短句10来字比较多,textcnn比较合理,长文本问题那就试试lstm之类的rnn系列方法,如果关键词类,知识类依赖多那bert之类的是可以尝试的,如果是类似黄反识别,文化作品这种对文本词汇比较敏感的,建议用文本匹配的方式去做。相比一把梭,不去花时间多分析分析问题,然后解决问题,而且做过的问题

### 图像算法工程师概述 图像算法工程师是一种专注于计算机视觉图像处理领域工作的专业技术角色。其核心职责在于通过设计、开发优化各种图像处理算法来解决实际应用中的问题[^1]。 #### 职位描述 图像算法工程师的主要任务涉及研究并实现针对特定场景下的图像分析解决方案,例如目标检测、人脸识别、视频监控以及医疗影像诊断等领域内的技术突破与落地实施。他们通常会参与到从需求定义到最终部署整个流程的不同阶段工作中去[^4]。 #### 技能要求 为了胜任这一职位,候选人需具备扎实的数学基础(尤其是统计学与线性代数),精通至少一种主流编程语言如Python 或 C++ 来完成高效编码;同时还需要深入理解卷积神经网络(CNNs)等相关概念及其应用场景,并熟练运用TensorFlow, PyTorch 等开源工具框架来进行实验验证及性能调优操作[^3]。 另外,在某些特殊行业比如医疗器械制造方面,则可能额外强调对于相关法规标准的认知水平以及项目管理方面的软实力培养。 #### 职业发展路径 随着人工智能特别是深度学习技术迅猛进步所带来的影响日益加深,“大模型”成为当前热点话题之一 。在此背景下,传统意义上的单纯从事单一功能模块研发工作的模式正在逐渐向更加综合性的方向转变——即不仅限于构建高性能预测系统本身,还涉及到如何更好地服务于业务逻辑从而创造更大价值等方面考虑[^2]。 因此,未来的图像算法工程师除了继续深化自身专业领域能力之外,还可以探索诸如AI绘图师、AIGC专家甚至是提示工程师这样新兴交叉学科岗位的可能性。这些新角色往往更加强调跨部门协作能力创造性思维的应用实践能力。 ```python import cv2 import numpy as np def detect_faces(image_path): face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') img = cv2.imread(image_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) for (x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) return img detected_image = detect_faces("sample.jpg") cv2.imshow("Detected Faces", detected_image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 上述代码展示了一个简单的面部识别程序例子,它利用OpenCV库实现了基本的人脸定位功能。这对于初学者来说是一个很好的起点,可以帮助理解掌握图像处理的基础原理技术要点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值