min-max 反演
先给出式子
max{
S}=∑T⊆S(−1)∣T∣+1min{
T}(1)max\{S\}=\sum_{T \subseteq S}(-1)^{|T|+1}min\{T\} \tag{1}max{
S}=T⊆S∑(−1)∣T∣+1min{
T}(1)
min{
S}=∑T⊆S(−1)∣T∣+1max{
T}(2)min\{S\}=\sum_{T \subseteq S}(-1)^{|T|+1}max\{T\} \tag{2} min{
S}=T⊆S∑(−1)∣T∣+1max{
T}(2)
两个式子是对称的,我们证明第一个。
设在集合SSS中,第kkk大的元素为xkx_kxk
∑T⊆S(−1)∣T∣+1min{ T}=∑k=1nxk∑i=0k−1(−1)i+2(k−1i)=∑k=1nxk∑i=0k−1(−1)i(k−1i)=∑k=1nxk(1−1)k−1=x1=max{ S}\begin{aligned} \sum_{T \subseteq S}(-1)^{|T|+1}min\{T\} &= \sum_{k=1}^nx_k \sum_{i=0}^{k-1}(-1)^{i+2}\binom{k-1}{i} \\ &=\sum_{k=1}^nx_k\sum_{i=0}^{k-1}(-1)^i\binom{k-1}{i} \\ &=\sum_{k=1}^n x_k(1-1)^{k-1} \\ &=x_1 \\ &= max\{S\}\end{aligned} T⊆S∑(−1)∣T∣+1min{ T}=k=1∑nxki=0∑k−1(−1)i+2(ik−1)=k=1∑nxki=0∑k−1(−1)i(ik−1)=k=1∑nxk(1−1)k−1=x1=max{ S}
则在(1)式的右边,xkx_kxk作为最小值出现的系数为∑i=0k−1(−1)i+2(k−1i)=∑i=0k−1(−1)i(k−1i)=(1−1)k−1(3)\sum_{i=0}^{k-1}(-1)^{i+2}\binom{k-1}{i}=\sum_{i=0}^{k-1}(-1)^{i}\binom{k-1}{i}=(1-1)^{k-1} \tag{3}i=0∑