min-max反演

min-max 反演

先给出式子
max{ S}=∑T⊆S(−1)∣T∣+1min{ T}(1)max\{S\}=\sum_{T \subseteq S}(-1)^{|T|+1}min\{T\} \tag{1}max{ S}=TS(1)T+1min{ T}(1)
min{ S}=∑T⊆S(−1)∣T∣+1max{ T}(2)min\{S\}=\sum_{T \subseteq S}(-1)^{|T|+1}max\{T\} \tag{2} min{ S}=TS(1)T+1max{ T}(2)
两个式子是对称的,我们证明第一个。
设在集合SSS中,第kkk大的元素为xkx_kxk

∑T⊆S(−1)∣T∣+1min{ T}=∑k=1nxk∑i=0k−1(−1)i+2(k−1i)=∑k=1nxk∑i=0k−1(−1)i(k−1i)=∑k=1nxk(1−1)k−1=x1=max{ S}\begin{aligned} \sum_{T \subseteq S}(-1)^{|T|+1}min\{T\} &= \sum_{k=1}^nx_k \sum_{i=0}^{k-1}(-1)^{i+2}\binom{k-1}{i} \\ &=\sum_{k=1}^nx_k\sum_{i=0}^{k-1}(-1)^i\binom{k-1}{i} \\ &=\sum_{k=1}^n x_k(1-1)^{k-1} \\ &=x_1 \\ &= max\{S\}\end{aligned} TS(1)T+1min{ T}=k=1nxki=0k1(1)i+2(ik1)=k=1nxki=0k1(1)i(ik1)=k=1nxk(11)k1=x1=max{ S}

则在(1)式的右边,xkx_kxk作为最小值出现的系数为∑i=0k−1(−1)i+2(k−1i)=∑i=0k−1(−1)i(k−1i)=(1−1)k−1(3)\sum_{i=0}^{k-1}(-1)^{i+2}\binom{k-1}{i}=\sum_{i=0}^{k-1}(-1)^{i}\binom{k-1}{i}=(1-1)^{k-1} \tag{3}i=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值