问题描述
我们知道,阶乘n!表示n*(n-1)(n-2)…21, 类似的,可以定义多阶乘计算,例如:5!!=531,依次可以有n!..!(k个‘!’,可以简单表示为n(k)!)=n*(n-k)(n-2k)…(直到最后一个数<=0)。
现给定一组数据n、k、m,当m=1时,计算并输出n(1)!+n(2)!+…+n(k)!的值,m=2时计算并输出n(1)!+n(2)!+…+n(k)!的各个位上的数字之和。
输入格式
两行,第一行为n和k,第二行为m。
输出格式
一行,为n(1)!+n(2)!+…+n(k)!的值或n(1)!+n(2)!+…+n(k)!的各个位上的数字之和。
样例输入
5 1
2
样例输出
3
这道题的关键在于对n(k)的实现,我们把这一部分实现了,对于整体而言,循环求解就好了。
import java.util.Scanner;
public class 多阶乘计算 {
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int k=sc.nextInt();
int m=sc.nextInt();
long sum=0;
for(int i=1;i<=k;i++)
sum+=nk(n,i);
if(m==1)
System.out.print(sum);
else
{
int total=0;
char[] number=String.valueOf(sum).toCharArray();
for(char ch:number)
total+=(ch-'0');
System.out.print(total);
}
}
public static long nk(int n,int k)
{
long sum=1;
int c=0;
while(true)
{
if((n-c*k)<=1)
break;
else
sum*=(n-c*k);
c+=1;
}
return sum;
}
}