二叉树—遍历非递归算法

中序遍历非递归遍历算法

  •  遇到一个结点,就把它压栈,并去遍历它的左子树;
  •  当左子树遍历结束后,从栈顶弹出这个结点并访问它;
  •  然后按其右指针再去中序遍历该结点的右子树。  

观察可以发现,不管哪种遍历方式它走的路线都是一致的,关键在于在哪一次访问的时候进行输出。

前序遍历与中序遍历非常相似,前序入栈时即为第一次访问的时候,在这里输出。

后序遍历相对复杂:因为里面存在着一些访问次数为3的结点!

因此在出栈操作那个地方需要进行修改,这里把抛出条件分成两种情况:

  1. 没有右子树,可以直接抛出。
  2. 有右子树,且这个右子树已经抛出。(这个时候就是第三次访问这个结点)

 

         完整代码如下:                         

#include <iostream>
#include <stack>
using namespace std;
typedef  struct  TreeNode* BinTree;
//typedef  BinTree Position; 
struct  TreeNode {
    char  Data;
    BinTree  Left;
    BinTree  Right;
};
/*以前序遍历的形式输入来创建树*/
void CreatBinTree(BinTree& T)
{
    char ch;
    cin >> ch;
    if (ch == '#') T = NULL;
    else {
        T = new struct TreeNode;
        T->Data = ch;
        CreatBinTree(T->Left);
        CreatBinTree(T->Right);
    }
}

void InOrderTraversal(BinTree BT)
{
    BinTree t = BT;
    stack<BinTree> s;
    while (t || !s.empty())
    {
        while (t)
        {
            s.push(t);
            t = t->Left;
        }
        if (!s.empty())
        {
            BinTree c = s.top();
            s.pop();
            cout << c->Data;
            t = c->Right;
        }
    }
}

void PreOrderTraversal(BinTree BT)
{
    BinTree t = BT;
    stack<BinTree> s;
    while (t || !s.empty())
    {
        while (t)
        {
            s.push(t);
            cout << t->Data;
            t = t->Left;
        }
        if (!s.empty())
        {
            BinTree c = s.top();
            s.pop();
            t = c->Right;
        }
    }
}

void PostOrderTraversal(BinTree BT)
{
    BinTree t = BT;
    BinTree Prev = NULL;
    stack<BinTree> s;
    while (t || !s.empty())
    {
        while (t)
        {
            s.push(t);
            t = t->Left;
        }
        if (!s.empty())
        {
            BinTree c = s.top();
            if (c->Right == NULL || Prev == c->Right)
                //当它没有右节点时,或者右边的结点已经被访问过就可以抛出(输出)
            {
                cout << c->Data;
                Prev = c;
                s.pop();
            }
            else
                t = c->Right;
        }
    }
}


bool IsEmpty(BinTree BT)
{
    if (BT) return true;
    else return false;
}

int main()
{
    BinTree t;
    //t = new struct TreeNode;
    CreatBinTree(t);
    InOrderTraversal(t);
    cout << endl;
    PreOrderTraversal(t);
    cout << endl;
    PostOrderTraversal(t);
    return 0;
}

 

二叉树遍历非递归算法是指在不使用递归的情况下,实现对二叉树遍历。常用的非递归算法有三种:非递归前序遍历、非递归中序遍历和非递归后序遍历。 以下是三种非递归遍历二叉树的算法: 1. 非递归前序遍历二叉树 ```c void preOrderNRec(Tree root){ Tree stack[MAXSIZE], node; int k = -1; if (root == NULL){ printf("tree is empty-- \n"); return; } else{ k++; // 仿照一个栈 stack[k] = root; // 将根节点入栈 while (k > -1){ //出栈 node = stack[k--]; printf(" %c - ", node->data); // 先把右子树放进去,栈是先进去后出,所以下面的左子树先出 if (node->right != NULL){ stack[++k] = node->right; } if (node->left != NULL){ stack[++k] = node->left; } } } } ``` 2. 非递归中序遍历二叉树 ```c void inOrderNRec(Tree root){ Tree stack[MAXSIZE], node; int k = -1; if (root == NULL){ printf("tree is empty-- \n"); return; } else{ node = root; while (k > -1 || node != NULL){ while (node != NULL){ stack[++k] = node; node = node->left; } if (k > -1){ node = stack[k--]; printf(" %c - ", node->data); node = node->right; } } } } ``` 3. 非递归后序遍历二叉树 ```c void postOrderNRec(Tree root){ Tree stack[MAXSIZE], node, lastVisit; int k = -1; if (root == NULL){ printf("tree is empty-- \n"); return; } else{ node = root; while (k > -1 || node != NULL){ while (node != NULL){ stack[++k] = node; node = node->left; } node = stack[k]; if (node->right == NULL || node->right == lastVisit){ printf(" %c - ", node->data); lastVisit = node; k--; node = NULL; } else{ node = node->right; } } } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值