多普勒频率的推导(纯公式版)
前奏
d=vΔtd=v\Delta td=vΔt
cτ=cΔt+vΔtc\tau=c\Delta t+v\Delta tcτ=cΔt+vΔt
cτ′=cΔt−vΔtc\tau'=c\Delta t-v\Delta tcτ′=cΔt−vΔt
cτ′cτ=cΔt−vΔtcΔt+vΔt\frac{c\tau'}{c\tau}=\frac{c\Delta t-v\Delta t}{c\Delta t+v\Delta t}cτcτ′=cΔt+vΔtcΔt−vΔt
τ′=c−vc+vτ\tau'=\frac{c-v}{c+v}\tauτ′=c+vc−vτ
方法一
d=vΔtd=v\Delta td=vΔt
cfr−d=cΔt\frac{c}{f_r}-d=c\Delta tfrc−d=cΔt
Δt=1c+vcfr\Delta t=\frac{1}{c+v}\frac{c}{f_r}Δt=c+v1frc
d=1frcvc+vd = \frac{1}{f_r}\frac{cv}{c+v}d=fr1c+vcv
cfr′=cΔt−vΔt\frac{c}{f_r'}=c\Delta t-v\Delta tfr′c=cΔt−vΔt
fr′=c+vc−vfrf_r'=\frac{c+v}{c-v}f_rfr′=c−vc+vfr
f0′=c+vc−vf0f_0'=\frac{c+v}{c-v}f_0f0′=c−vc+vf0
fd=f0′−f0=c+vc−vf0−f0f_d=f_0'-f_0=\frac{c+v}{c-v}f_0-f_0fd=f0′−f0=c−vc+vf0−f0
v<<cv<<cv<<c
c=λf0c=\lambda f_0c=λf0
fd=2vcf0=2vλf_d=\frac{2v}{c}f_0=\frac{2v}{\lambda}fd=c2vf0=λ2v
方法二
R(t)=R0−v∗(t−t0)R(t)=R_0-v*(t-t_0)R(t)=R0−v∗(t−t0)
xr(t)=x(t−ϕ(t))x_r(t)=x(t-\phi (t))xr(t)=x(t−ϕ(t))
ϕ(t)=2cR(t)=2c(R0−vt+vt0)\phi (t)=\frac{2}{c}R(t)=\frac{2}{c}(R_0-vt+vt_0)ϕ(t)=c2R(t)=c2(R0−vt+vt0)
xr(t)=x((1+2vc)t−ϕ0)x_r(t)=x((1+\frac{2v}{c})t-\phi_0)xr(t)=x((1+c2v)t−ϕ0)
ϕ0=2R0c+2vct0\phi_0=\frac{2R_0}{c}+\frac{2v}{c}t_0ϕ0=c2R0+c2vt0
γ=1+2vc\gamma=1+\frac{2v}{c}γ=1+c2v
xr(t)=x(γt−ϕ0)x_r(t)=x(\gamma t-\phi_0)xr(t)=x(γt−ϕ0)
x(t)=y(t)cosω0tx(t)=y(t)cos\omega_0 tx(t)=y(t)cosω0t
xr(t)=y(γt−ϕ0)cos(γω0t−ω0ϕ0)x_r(t)=y(\gamma t-\phi_0)cos(\gamma \omega_0 t-\omega_0\phi_0)xr(t)=y(γt−ϕ0)cos(γω0t−ω0ϕ0)
Xr(ω)=12γ(Y(ωγ−ω0)+Y(ωγ+ω0))X_r(\omega)=\frac{1}{2\gamma}(Y(\frac{\omega}{\gamma}-\omega_0)+Y(\frac{\omega}{\gamma}+\omega_0))Xr(ω)=2γ1(Y(γω−ω0)+Y(γω+ω0))
ωd=ω0−γω0\omega_d=\omega_0-\gamma\omega_0ωd=ω0−γω0
fd=f0−γf0f_d=f_0-\gamma f_0fd=f0−γf0
fd=2vcf0=2vλf_d=\frac{2v}{c}f_0=\frac{2v}{\lambda}fd=c2vf0=λ2v