雷达信号检测问题与奈曼-皮尔逊准则
雷达信号检测问题属于一个二元检测问题,即或者为目标加噪声情况,或者为仅含有噪声情况。对观察信号空间DDD的划分问题,即将DDD空间划分为D1D_1D1 (有信号)和D0D_0D0 (无信号)两个子空间,并满足D=D0∪D1D=D_0\cup D_1D=D0∪D1,D0∩D1=∅D_0\cap D_1=\emptysetD0∩D1=∅。子空间D0D_0D0和D1D_1D1称为判决域。若某个观测量(x∣Hi)(i=0,1)(x|{ {H}_{i}})(i=0,1)(x∣Hi)(i=0,1)落入D1D_1D1域,就判决假设H1H_1H1成立,否则就判决假设H0H_0H0成立。
在不考虑杂波与干扰的问题下,认为接收回波中仅可能存在信号加噪声或纯噪声这两种情况。将仅含有噪声的情况设为H0H_0H0假设,含有信号加噪声的情况为H1H_1H1假设,有
{
H0:x(t)=n(t)H1:x(t)=s(t)+n(t) \left\{ \begin{aligned} & {
{H}_{0}}:x(t)=n(t) \\ & {
{H}_{1}}:x(t)=s(t)+n(t) \\ \end{aligned} \right. {
H0:x(t)=n(t)H1:x(t)=s(t)+n(t)
其中n(t)n(t)n(t)为均值为0,方差为σn2\sigma_n^2σn2的高斯白噪声,s(t)s(t)s(t)为确知信号。对二元检测问题,存在两种正确判决和两种错误判决:
Pd=P(H1∣H1)Pn=P(H0∣H0)Pm=P(H0∣H1)Pfa=P(H0∣H0) \begin{aligned} & {
{P}_{d}}=P({
{H}_{1}}|{
{H}_{1}}) \\ & {
{P}_{n}}=P({
{H}_{0}}|{
{H}_{0}}) \\ & {
{P}_{m}}=P({
{H}_{0}}|{
{H}_{1}}) \\ & {
{P}_{fa}}=P({
{H}_{0}}|{
{H}_{0}}) \\ \end{aligned} Pd=P(H1∣H1)Pn=P(H0∣H0)Pm=P(H0∣H1)Pfa=P(H0∣H0)
其中,Pd{
{P}_{d}}Pd为检测概率,Pn{
{P}_{n}}P