雷达信号检测问题与奈曼-皮尔逊准则

雷达信号检测问题与奈曼-皮尔逊准则

​ 雷达信号检测问题属于一个二元检测问题,即或者为目标加噪声情况,或者为仅含有噪声情况。对观察信号空间DDD的划分问题,即将DDD空间划分为D1D_1D1 (有信号)和D0D_0D0 (无信号)两个子空间,并满足D=D0∪D1D=D_0\cup D_1D=D0D1D0∩D1=∅D_0\cap D_1=\emptysetD0D1=。子空间D0D_0D0D1D_1D1称为判决域。若某个观测量(x∣Hi)(i=0,1)(x|{ {H}_{i}})(i=0,1)(xHi)(i=0,1)落入D1D_1D1域,就判决假设H1H_1H1成立,否则就判决假设H0H_0H0成立。

​ 在不考虑杂波与干扰的问题下,认为接收回波中仅可能存在信号加噪声或纯噪声这两种情况。将仅含有噪声的情况设为H0H_0H0假设,含有信号加噪声的情况为H1H_1H1假设,有
{ H0:x(t)=n(t)H1:x(t)=s(t)+n(t) \left\{ \begin{aligned} & { {H}_{0}}:x(t)=n(t) \\ & { {H}_{1}}:x(t)=s(t)+n(t) \\ \end{aligned} \right. { H0:x(t)=n(t)H1:x(t)=s(t)+n(t)
其中n(t)n(t)n(t)为均值为0,方差为σn2\sigma_n^2σn2的高斯白噪声,s(t)s(t)s(t)为确知信号。对二元检测问题,存在两种正确判决和两种错误判决:
Pd=P(H1∣H1)Pn=P(H0∣H0)Pm=P(H0∣H1)Pfa=P(H0∣H0) \begin{aligned} & { {P}_{d}}=P({ {H}_{1}}|{ {H}_{1}}) \\ & { {P}_{n}}=P({ {H}_{0}}|{ {H}_{0}}) \\ & { {P}_{m}}=P({ {H}_{0}}|{ {H}_{1}}) \\ & { {P}_{fa}}=P({ {H}_{0}}|{ {H}_{0}}) \\ \end{aligned} Pd=P(H1H1)Pn=P(H0H0)Pm=P(H0H1)Pfa=P(H0H0)
其中,Pd{ {P}_{d}}Pd为检测概率,Pn{ {P}_{n}}P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

creature0001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值