基于YOLOv5的交通标志牌检测研究
前言
交通标志牌在道路安全和交通管理中扮演着重要角色。利用计算机视觉技术进行交通标志牌的自动检测和识别,有助于提升交通系统的智能化和效率。本篇博客将介绍如何使用YOLOv5(You Only Look Once)算法进行交通标志牌的检测研究。
内容概述
-
数据收集和准备
- 收集交通标志牌图像数据集,并进行标注,以创建训练集和验证集。
-
数据增强
- 使用数据增强技术,如随机缩放、翻转和旋转,增加训练数据的多样性。
-
模型选择与微调
- 选择预训练的YOLOv5模型作为基础模型,并在交通标志牌数据集上进行微调。
-
评估与调优
- 使用评价指标如Precision、Recall、mAP等,监控模型性能,进行调优。
-
模型部署
- 部署训练好的模型到实际应用,实现交通标志牌的自动检测。
数学公式
YOLOv5算法的目标函数可以表示为:
L=λcoord∑i=0S2∑j=0B1iobj[(xi−x^i)2+(yi−y^i)2]+λcoord∑i=0S2∑j=0B1iobj[(wi−w^i)2+(hi−h^i)2]+∑i=0S2∑j=0B1iobj(Ci−C^i)2+λnoobj∑i=0S2∑j=0B1inoobj(Ci−C^i)2+∑i=0S21iobj∑c∈classes(pi(c)−p^i(c))2 \mathcal{L} = \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_i^{obj} \left[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_i^{obj} \left[ (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2 \right] + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_i^{obj} \left( C_i - \hat{C}_i \right)^2 + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_i^{noobj} \left( C_i - \hat{C}_i \right)^2 + \sum_{i=0}^{S^2} \mathbb{1}_i^{obj} \sum_{c \in \text{classes}} \left( p_i(c) - \hat{p}_i(c) \right)^2 L=λcoordi=0∑S2j=0∑B1iobj[(xi−x^i)2+(yi−y^i)2]+λcoordi=0∑S2j=0∑B1iobj[(wi−w^i)2+(hi−h^i)2]+i=0∑S2j=0∑B1iobj(Ci−C^i)2+λnoobji=0∑S2j=0∑B1inoobj(Ci−C^i)2+i=0∑S21iobjc∈classes∑(pi(c)−p^i(c))2
其中,SSS为网格大小,BBB为每个格子预测的边界框数量,1iobj\mathbb{1}_i^{obj}1iobj表示第iii个格子是否包含目标,1inoobj\mathbb{1}_i^{noobj}1inoobj表示第iii个格子是否不包含目标,(xi,yi)(x_i, y_i)(xi,yi)表示第iii个格子中心坐标,(wi,hi)(w_i, h_i)(wi,hi)表示边界框的宽度和高度,CiC_iCi为类别分数,pi(c)p_i(c)pi(c)表示第iii个格子属于类别ccc的概率。
示例代码
以下是使用PyTorch和YOLOv5进行交通标志牌检测的示例代码:
import torch
from models.experimental import attempt_load
from utils.datasets import LoadImages
from utils.general import check_img_size, non_max_suppression
# 加载YOLOv5模型
weights = 'yolov5s.pt'
model = attempt_load(weights, map_location=torch.device('cuda'))
# 设置输入图像大小
img_size = 640
# 加载图像
img_path = 'test.jpg'
img = torch.zeros((1, 3, img_size, img_size), device='cuda')
img = LoadImages(img_path, img_size=img_size).preprocess(img)[0]
# 进行推理
pred = model(img)[0]
# 进行非最大抑制
pred = non_max_suppression(pred, conf_thres=0.5, iou_thres=0.5)
# 打印检测结果
for det in pred:
if len(det):
det[:, :4] = det[:, :4].clip(0, img_size) # 剪裁检测框坐标
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # 检测框中特定类别的数量
print(f'{n}个类别为{c.item()}的交通标志牌被检测到')