基于YOLOv5的交通标志牌检测研究

本文介绍了使用YOLOv5算法对交通标志牌进行自动检测的研究,包括数据收集、数据增强、模型微调、性能评估和实际部署的过程,以及目标函数的数学表达式和示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于YOLOv5的交通标志牌检测研究

在这里插入图片描述

前言

交通标志牌在道路安全和交通管理中扮演着重要角色。利用计算机视觉技术进行交通标志牌的自动检测和识别,有助于提升交通系统的智能化和效率。本篇博客将介绍如何使用YOLOv5(You Only Look Once)算法进行交通标志牌的检测研究。

内容概述

  1. 数据收集和准备

    • 收集交通标志牌图像数据集,并进行标注,以创建训练集和验证集。
  2. 数据增强

    • 使用数据增强技术,如随机缩放、翻转和旋转,增加训练数据的多样性。
  3. 模型选择与微调

    • 选择预训练的YOLOv5模型作为基础模型,并在交通标志牌数据集上进行微调。
  4. 评估与调优

    • 使用评价指标如Precision、Recall、mAP等,监控模型性能,进行调优。
  5. 模型部署

    • 部署训练好的模型到实际应用,实现交通标志牌的自动检测。

数学公式

YOLOv5算法的目标函数可以表示为:

L=λcoord∑i=0S2∑j=0B1iobj[(xi−x^i)2+(yi−y^i)2]+λcoord∑i=0S2∑j=0B1iobj[(wi−w^i)2+(hi−h^i)2]+∑i=0S2∑j=0B1iobj(Ci−C^i)2+λnoobj∑i=0S2∑j=0B1inoobj(Ci−C^i)2+∑i=0S21iobj∑c∈classes(pi(c)−p^i(c))2 \mathcal{L} = \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_i^{obj} \left[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_i^{obj} \left[ (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2 \right] + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_i^{obj} \left( C_i - \hat{C}_i \right)^2 + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_i^{noobj} \left( C_i - \hat{C}_i \right)^2 + \sum_{i=0}^{S^2} \mathbb{1}_i^{obj} \sum_{c \in \text{classes}} \left( p_i(c) - \hat{p}_i(c) \right)^2 L=λcoordi=0S2j=0B1iobj[(xix^i)2+(yiy^i)2]+λcoordi=0S2j=0B1iobj[(wiw^i)2+(hih^i)2]+i=0S2j=0B1iobj(CiC^i)2+λnoobji=0S2j=0B1inoobj(CiC^i)2+i=0S21iobjcclasses(pi(c)p^i(c))2

其中,SSS为网格大小,BBB为每个格子预测的边界框数量,1iobj\mathbb{1}_i^{obj}1iobj表示第iii个格子是否包含目标,1inoobj\mathbb{1}_i^{noobj}1inoobj表示第iii个格子是否不包含目标,(xi,yi)(x_i, y_i)(xi,yi)表示第iii个格子中心坐标,(wi,hi)(w_i, h_i)(wi,hi)表示边界框的宽度和高度,CiC_iCi为类别分数,pi(c)p_i(c)pi(c)表示第iii个格子属于类别ccc的概率。

示例代码

以下是使用PyTorch和YOLOv5进行交通标志牌检测的示例代码:

import torch
from models.experimental import attempt_load
from utils.datasets import LoadImages
from utils.general import check_img_size, non_max_suppression

# 加载YOLOv5模型
weights = 'yolov5s.pt'
model = attempt_load(weights, map_location=torch.device('cuda'))

# 设置输入图像大小
img_size = 640

# 加载图像
img_path = 'test.jpg'
img = torch.zeros((1, 3, img_size, img_size), device='cuda')
img = LoadImages(img_path, img_size=img_size).preprocess(img)[0]

# 进行推理
pred = model(img)[0]

# 进行非最大抑制
pred = non_max_suppression(pred, conf_thres=0.5, iou_thres=0.5)

# 打印检测结果
for det in pred:
    if len(det):
        det[:, :4] = det[:, :4].clip(0, img_size)  # 剪裁检测框坐标
        for c in det[:, -1].unique():
            n = (det[:, -1] == c).sum()  # 检测框中特定类别的数量
            print(f'{n}个类别为{c.item()}的交通标志牌被检测到')
           
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Doomer_0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值