PaddleOCR之实践应用

本文记录了使用PaddleOCR进行OCR实践的过程,包括下载预训练模型、检测和识别模型的训练与推理,以及遇到的问题和解决办法,如模型导出后识别效果下降的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

栽了很多跟头,总算跑起来一个简简单单可以用的模型,记录一下走过的弯路,一来防止后面还要继续跑备个份,二来能帮到来者就更好了。

下面是在Ai Studio上跑的代码,有的是用来做测试的,有的是要执行的,给出标记和注释供参考。

Python版本:python 3.7
框架版本:PaddlePaddle 2.1.2

# 进根目录(执行)
%cd ~ 
# 拉取2.1版本的代码(执行)
# 附链接https://github.com/PaddlePaddle/PaddleOCR/releases/tag/v2.1.1
!git clone https://gitee.com/paddlepaddle/PaddleOCR.git
%cd ~/PaddleOCR
# 升级pip
!python -m pip install --upgrade pip
# 安装依赖库
!pip install -r requirements.txt -i https://mirror.baidu.com/pypi/simple

根据需求下载预训练模型

OCR模型列表(V2.1,2021年9月6日更新)
两阶段算法
检测算法预训练模型下载

# 根据backbone的不同选择下载对应的预训练模型
# 下载MobileNetV3的预训练模型
!wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
# 或,下载ResNet18_vd的预训练模型
!wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams
# 或,下载ResNet50_vd的预训练模型
!wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams


识别算法预训练模型下载

# 下载通用中英文预训练模型做finetune
!wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar
! cd pretrain_models/ && tar xf ch_ppocr_server_v2.0_rec_pre.tar
# 测试代码,无需执行
import matplotlib.pyplot as plt
from PIL import Image

## 显示原图,读取名称为11.jpg的测试图像
img_path= "./inference_results/Image_20210624144721038.bmp"
img = Image.open(img_path)
plt.figure("test_img", figsize=(20,20))
plt.imshow(img)
plt.show()

检测模型

配置文件:det_mv3_db.yml

Global:
  use_gpu: true
  epoch_num: 1200 #可能需要修改
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/db_mv3/
  save_epoch_step: 1200 #可能需要修改
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000] #可能需要修改
  cal_metric_during_train: False
  pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained #可能需要修改--预训练模型,不使用则删除
  checkpoints: #可能需要修改--一般置空,用于恢复训练
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./output/det_db/predicts_db.txt

Architecture:
  model_type: det
  algorithm: DB
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: large
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值