让知识流动·进化·创造价值
一、产品定位
AI 驱动的知识循环引擎
- 核心价值:解决知识经济“三高一低”困局(高碎片/高成本/高流失/低复用)
- 技术三角:
- DIKW-SECI 理论:数据→信息→知识→智慧阶梯升华
- 动态知识图谱:Neo4j 构建企业知识神经网络
- AI 进化引擎:Deepseek/Qwen/Ollama 实现知识自优化
二、产品价值链分析
角色 | 痛点 | 价值实现路径 | 益处 |
---|---|---|---|
企业管理者 | 知识流失造成业务断层 | 员工经验→可检索知识资产 | 离职知识损失下降 |
一线员工 | 50%时间浪费在找资料 | 语义检索+场景化答案生成 | 信息获取效率上升 |
开发者 | 重复开发行业组件 | 智能体插件调用 | 开发周期下降 |
行业机构 | 缺乏专属知识体系 | 开箱即用行业图谱 | 培训成本下降 |
三、产品用户设计
核心用户场景与执行路径
用户角色 | 核心场景 | 关键执行路径 | 系统赋能价值 |
---|---|---|---|
企业管理者 | 知识资产审计 | 1. 制定知识沉淀规范 → 2. 监控知识库贡献量 → 3. 审计复用率报表 | 隐性知识自动化沉淀,降低 70%离职知识损失 |
一线员工 | 紧急问题解决 | 1. 输入自然语言问题 → 2. 获取图谱关联答案 → 3. 反馈优化建议 | 信息获取效率提升 5 倍 |
运维工程师 | 服务器故障处理 | 1. 描述故障现象 → 2. 获取 SOP 流程图+工具包 → 3. 记录解决过程 | 关联历史案例,处理时效提升 60% |
HR 培训师 | 新员工上岗培训 | 1. 输入岗位 JD → 2. 生成个性化学习路径 → 3. 动态推送最新案例 | 培训成本降低 40% |
开发者 | 零售插件开发 | 1. 领取商品分析需求 → 2. 调用预置连接器 API → 3. 提交审核插件 | 开发周期缩短 70% |
教育机构 | 学科知识库构建 | 1. 导入教材 PDF → 2. AI 自动生成知识图谱 → 3. 部署问答机器人 | 开箱即用,部署效率提升 5x |
动漫设计师 | IP 角色关系管理 | 1. 上传角色设定稿 → 2. 自动构建关系网络 → 3. 生成创作素材包 | 内容产出效率翻倍 |
四、产品需求
技术型需求清单:
需求类型 | 实现方案 | 技术栈 |
---|---|---|
多源知识融合 | 插件化连接器框架(SPI 机制) | Spring Boot + Java21 |
精准知识检索 | 混合引擎(关键词+向量+图谱) | Neo4j+Qwen3 嵌入+OpenSPG |
隐性知识转化 | 对话记录 AI 萃取 | Ollama 微调+NER |
安全知识调用 | JWT+RBAC 权限控制 | Spring Security 6. x |
五、产品功能框架
四层架构:
┌─────────────────┐
│ 应用层 │ AI客服/培训平台/智能问答
├─────────────────┤
│ 核心引擎层 │ 知识获取→处理→存储→调用
│ (DIKW闭环) │ - 获取:Tesseract OCR+插件
│ │ - 处理:Qwen3知识重组
│ │ - 存储:Neo4j图谱+向量库
│ │ - 调用:混合检索+意图识别
├─────────────────┤
│ 基础能力层 │ 算力调度/多租户/安全
└─────────────────┘
六、产品核心流程
知识处理全链路:
- 输入:PDF/邮件/对话记录 → 格式标准化
- 处理:
- OCR 文本提取 → Tesseract
- AI 清洗打标 → Qwen3
- 图谱关系构建 → Neo4j Cypher
- 输出:
- 检索:混合引擎返回场景化答案(图谱+向量+关键词)
- 应用:生成 SOP/学习路径/决策建议
七、产品数据流向
关键技术闭环:
八、技术实施分析
关键技术选型逻辑:
模块 | 技术方案 | 优势说明 |
---|---|---|
AI 处理 | Qwen3+Ollama 双模型 | 平衡云端能力与本地隐私 |
知识存储 | Neo4j+LPG 模型+OpenSPG | 关系检索<100ms+内置向量库 |
检索引擎 | 关键词 BM25+向量 HNSW+图谱 Cypher | 准确率>90% |
任务调度 | Spring Scheduler | 支持亿级知识增量同步 |
安全控制 | JWT+RBAC 多租户隔离 | 细粒度到字段级权限 |
实施原则:
- 开源共建:Apache 2.0 协议核心引擎,商业插件闭环
- 渐进式扩展:优先实现图谱 CRUD→AI 基础功能→插件市场
方案核心价值:
- 对技术团队:开源引擎降低开发门槛,插件市场缩短场景适配周期
- 对企业用户:6 个月回收成本,知识复用率从<30%提升至 80%
- 对生态伙伴:A2A/MCP 协议支持构建知识联邦网络
感兴趣的同学联系我、私我、关注我、收藏我,加我 EQCover