机器人运动规划

       机器人运动规划是指为机器人设计一条从起点到终点的路径,使其能够避开障碍物并顺利到达目标位置。运动规划通常分为路径规划和轨迹规划两个步骤。

一、路径规划

       路径规划的目的是在有障碍的空间中找到一条无碰撞的路径。路径规划可以分为全局路径规划和局部路径规划。全局路径规划基于静态环境信息,规划出静态的全局安全路径,如栅格法、C空间法、Voronoi图法等。局部路径规划则基于机器人周围的局部环境信息,结合传感器实时采集的数据,规划出动态的局部安全路径,如人工势场法、模糊逻辑算法、遗传算法等。

栅格法

       栅格法是一种常见的全局路径规划方法,它将工作空间分割成规则的栅格,每个栅格包含二值信息,表示是否有障碍物。栅格法直观且建模相对容易,因此得到了广泛应用。

人工势场法

       人工势场法是一种经典的局部路径规划算法,将目标和障碍物分别看作对机器人有引力和斥力的物体。通过构建引力势场和斥力势场,机器人在复合场中受到引力和斥力的作用,搜索无碰撞的避障路径。

二、轨迹规划

       轨迹规划是根据路径规划生成的离散点,计算一条连续的满足机器人运动学和动力学约束的轨迹。轨迹规划主要包括关节空间(Joint-Space)轨迹规划和操作空间(Cartesian-space)轨迹规划。

Joint-Space轨迹规划

       Joint-Space轨迹规划需要确定轨迹的起点、途径点和终点,通过逆运动学计算出所有点的关节角度,并设计一条平滑的轨迹连接这些点。然后通过正运动学计算末端在世界坐标系下的曲线,并检查其合理性。

Cartesian-space轨迹规划

       Cartesian-space轨迹规划需要设计一条曲线连接所有点,然后使用逆运动学计算出这条曲线在关节空间的轨迹。最后检查关节空间的轨迹是否平滑。

轨迹平滑算法

       轨迹平滑算法用于消除位置转折处的速度突变,常用的方法有多项式拟合和抛物线混合。多项式拟合通常使用三次以上的多项式,而抛物线混合通过恒定加速度使速度在转角处逐渐改变,从而获得圆滑的转角。

三、总结

       机器人运动规划包括路径规划和轨迹规划两个步骤,路径规划用于找到无碰撞的路径,轨迹规划用于生成满足运动学和动力学约束的平滑轨迹。常用的路径规划方法有栅格法和人工势场法,轨迹规划方法有Joint-Space和Cartesian-space轨迹规划。轨迹平滑算法如多项式拟合和抛物线混合可以提高轨迹的平滑性和执行效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值