【UV统计】海量数据统计的前世今生

转载请注明出处

背景

在互联网公司中,每个项目都需要数据统计、分析,便于项目组利用详细数据研究项目的整体情况,进行下一步的调整。在数据统计中,UV统计是最常见的,也是最普遍的。有的场景要求实时性很高,有点场景要求准确性很高,有的场景比较在意计算过程中的内存。不同的场景使用不同的算法,下面我们从0到1简单介绍下UV统计领域。

什么是UV统计

假设我们的场景是商家这边上架一系列水果,然后需要统计出一共上架几种水果。具体如下所示:

针对这个问题,我们想到的最简单的方式就是利用STL中的set处理。

SET

上架一个水果的时候,也同时在set中插入。最后需要统计的时候,直接计算set中一共有几个水果即可。具体如下所示:

这种方式准确率是绝对准确的,但是这种方式耗费的内存是很大的。
假设每个水果需要 K 字节,那么如果有 M 个水果,一共需要 K * M 字节。那么我们能不能缩小这里的内存呢?
稍微损失一点准确率换取内存?具体见下面HashMap的方式

HASHMAP

这种算法在上架一个水果的时候,只需要在特定的位置置1即可,而不需要存储这个位置上究竟是何种水果。然后在统计的时候,只需要统计hashmap里面有多少个1即可。
具体如下所示:

那么如果有M个水果,这里其实只需要 M / 8 字节,相比set的方式内存直接缩小到1/8。当然Hash肯定会有冲突的,所以这里肯定有一定准确率的损失。
但是如果涉及到海量数据的UV统计,这里的内存还是很大的。
能否用上统计学进一步缩小内存呢?具体见下面的Linear Count的方式。

Linear Count

这种算法在上架一个水果的时候,完全跟hashmap一致,在相应位置置1。
然后在统计的时候,利用统计学的方式,根据hashmap中零的个数给出一个估算值。具体如下所示:

假设M为哈希桶长度,那么每次上架水果,每个桶被选中的概率为:
1 M \frac{1}{M} M1
然后在上架N个元素后,某个桶为0的概率为:
( 1 − 1 M ) N (1-\frac{1}{M}) ^N (1M1)N
所以在上架n个元素后,哈希桶中零的个数期望为:
Z e r o N u m = ∑ i = 1 M ( 1 − 1 M ) N = M ( 1 − 1 M ) N = M ( ( 1 + 1 − M ) − M ) − N M ) ≈ M e − N M ZeroNum=\sum_{i=1}^M (1-\frac{1}{M}) ^N = M (1-\frac{1}{M}) ^N= M ((1+\frac{1}{-M})^{-M})^{-\frac{N}{M}}) \approx Me^{- \frac{N}{M}} ZeroNum=i=1M(1M1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值