飞桨AI第一周学习笔记

本文深入探讨了飞桨框架下的深度学习应用,包括房价预测的线性回归模型与手写数字识别的卷积神经网络模型。从数据处理、模型设计、训练配置到训练过程,全面解析深度学习在实际场景中的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

飞桨AI深度学习笔记

Numpy 一些函数
mean() 函数定义:
numpy.mean(array, axis, dtype, out,keepdims )
mean()函数功能:求取均值
经常操作的参数为axis,以m * n矩阵举例:
axis 不设置值,对 mn 个数求均值,返回一个实数
axis = 0:压缩行,对各列求均值,返回 1
n 矩阵
axis =1 :压缩列,对各行求均值,返回 m *1 矩阵

np.arange()
函数返回一个有终点和起点的固定步长的排列,如[1,2,3,4,5],起点是1,终点是5,步长为1。
参数个数情况: np.arange()函数分为一个参数,两个参数,三个参数三种情况
1)一个参数时,参数值为终点,起点取默认值0,步长取默认值1。
2)两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。
3)三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长。其中步长支持小数

两个案例:
1. 房价预测案例
13个影响因素,一个输出值,采用线性回归模型和一层神经网络。
**数据处理:**将读入的数据进行归一化,公式为 (值-平均值)/(最大值-最小值),并区分训练集和测试集,对数据进行分批处理。
**模型设计:**采用线性回归模型,随机生成每个因素的权值和外围的b值,并定义前向计算,
**训练配置:**采用随机梯度下降法,设置学习率为0.01,并且利用均方差作为损失函数
**训练过程:**二层循环,前向计算,计算损失函数,求损失平均值,后向传播。
(保存模型)

import numpy as np

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        #np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        N = x.shape[0]
        gradient_w = 1. / N * np.sum((z-y) * x, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = 1. / N * np.sum(z-y)
        return gradient_w, gradient_b
    
    def update(self, gradient_w, gradient_b, eta = 0.01):
        self.w = self.w - eta * gradient_w
        self.b = self.b - eta * gradient_b
            
                
    def train(self, training_data, num_epoches, batch_size=10, eta=0.01):
        n = len(training_data)
        losses = []
        for epoch_id in range(num_epoches):
            # 在每轮迭代开始之前,将训练数据的顺序随机打乱
            # 然后再按每次取batch_size条数据的方式取出
            np.random.shuffle(training_data)
            # 将训练数据进行拆分,每个mini_batch包含batch_size条的数据
            mini_batches = [training_data[k:k+batch_size] for k in range(0, n, batch_size)]
            for iter_id, mini_batch in enumerate(mini_batches):
                #print(self.w.shape)
                #print(self.b)
                x = mini_batch[:, :-1]
                y = mini_batch[:, -1:]
                a = self.forward(x)
                loss = self.loss(a, y)
                gradient_w, gradient_b = self.gradient(x, y)
                self.update(gradient_w, gradient_b, eta)
                losses.append(loss)
                print('Epoch {:3d} / iter {:3d}, loss = {:.4f}'.
                                 format(epoch_id, iter_id, loss))
        
        return losses

2. 手写数字识别(分类模型)
输入为28*28的图片数据,利用卷积神经网络模型,对类别进行概率分析。
**数据处理:**划分数据为训练集,校验集和测试集,并生成批次数据。对数据进行乱序,最后检验数据的有效性。建议采用异步数据读取。
**模型设计:**采用了一层神经网络,多层神经网络,以及卷积神经网络,可发现卷积神经网络在视觉处理方面具有较高的优越性。设计两层全连接层与池化层,对最后池化层输出的数据利用softmax函数进行概率分析。
**训练配置:**学习率的设置采用Adam算法,损失函数采用分类模型常见的交叉熵函数
**训练过程:**与房价预测模型一致。最后保存模型。
**恢复训练:**验证中断后重启模型是否有一致的效果。

# 加载相关库
import os
import random
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
import numpy as np
from PIL import Image

import gzip
import json

# 定义数据集读取器
def load_data(mode='train'):

    # 读取数据文件
    datafile = './work/mnist.json.gz'
    print('loading mnist dataset from {} ......'.format(datafile))
    data = json.load(gzip.open(datafile))
    # 读取数据集中的训练集,验证集和测试集
    train_set, val_set, eval_set = data

    # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
    IMG_ROWS = 28
    IMG_COLS = 28
    # 根据输入mode参数决定使用训练集,验证集还是测试
    if mode == 'train':
        imgs = train_set[0]
        labels = train_set[1]
    elif mode == 'valid':
        imgs = val_set[0]
        labels = val_set[1]
    elif mode == 'eval':
        imgs = eval_set[0]
        labels = eval_set[1]
    # 获得所有图像的数量
    imgs_length = len(imgs)
    # 验证图像数量和标签数量是否一致
    assert len(imgs) == len(labels), \
          "length of train_imgs({}) should be the same as train_labels({})".format(
                  len(imgs), len(labels))

    index_list = list(range(imgs_length))

    # 读入数据时用到的batchsize
    BATCHSIZE = 100

    # 定义数据生成器
    def data_generator():
        # 训练模式下,打乱训练数据
        if mode == 'train':
            random.shuffle(index_list)
        imgs_list = []
        labels_list = []
        # 按照索引读取数据
        for i in index_list:
            # 读取图像和标签,转换其尺寸和类型
            img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
            label = np.reshape(labels[i], [1]).astype('int64')
            imgs_list.append(img) 
            labels_list.append(label)
            # 如果当前数据缓存达到了batch size,就返回一个批次数据
            if len(imgs_list) == BATCHSIZE:
                yield np.array(imgs_list), np.array(labels_list)
                # 清空数据缓存列表
                imgs_list = []
                labels_list = []

        # 如果剩余数据的数目小于BATCHSIZE,
        # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
        if len(imgs_list) > 0:
            yield np.array(imgs_list), np.array(labels_list)

    return data_generator


# 定义模型结构
class MNIST(fluid.dygraph.Layer):
     def __init__(self):
         super(MNIST, self).__init__()
         
         # 定义一个卷积层,输出通道20,卷积核大小为5,步长为1,padding为2,使用relu激活函数
         self.conv1 = Conv2D(num_channels=1, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
         # 定义一个池化层,池化核为2,步长为2,使用最大池化方式
         self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
         # 定义一个卷积层,输出通道20,卷积核大小为5,步长为1,padding为2,使用relu激活函数
         self.conv2 = Conv2D(num_channels=20, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
         # 定义一个池化层,池化核为2,步长为2,使用最大池化方式
         self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
         # 定义一个全连接层,输出节点数为10 
         self.fc = Linear(input_dim=980, output_dim=10, act='softmax')
    # 定义网络的前向计算过程
     def forward(self, inputs):
         x = self.conv1(inputs)
         x = self.pool1(x)
         x = self.conv2(x)
         x = self.pool2(x)
         x = fluid.layers.reshape(x, [x.shape[0], -1])
         x = self.fc(x)
         return x

#仅优化算法的设置有所差别
with fluid.dygraph.guard():
    model = MNIST()
    model.train()
    #调用加载数据的函数
    train_loader = load_data('train')
    optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.01, parameter_list=model.parameters())
    
    EPOCH_NUM = 5
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            #准备数据,变得更加简洁
            image_data, label_data = data
            image = fluid.dygraph.to_variable(image_data)
            label = fluid.dygraph.to_variable(label_data)
            
            #前向计算的过程
            predict = model(image)
            
            #计算损失,取一个批次样本损失的平均值
            loss = fluid.layers.cross_entropy(predict, label)
            avg_loss = fluid.layers.mean(loss)
            
            #每训练了200批次的数据,打印下当前Loss的情况
            if batch_id % 200 == 0:
                print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
            
            #后向传播,更新参数的过程
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            model.clear_gradients()

    #保存模型参数
    fluid.save_dygraph(model.state_dict(), 'mnist')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值