蓝桥杯历届试题-蚂蚁感冒(C语言)

题目描述

长100厘米的细长直杆子上有n只蚂蚁。它们的头有的朝左,有的朝右。
每只蚂蚁都只能沿着杆子向前爬,速度是1厘米/秒。
当两只蚂蚁碰面时,它们会同时掉头往相反的方向爬行。
这些蚂蚁中,有1只蚂蚁感冒了。并且在和其它蚂蚁碰面时,会把感冒传染给碰到的蚂蚁。
请你计算,当所有蚂蚁都爬离杆子时,有多少只蚂蚁患上了感冒。

输入格式

第一行输入一个整数n  (1  <   n  <   50),  表示蚂蚁的总数。 
接着的一行是n个用空格分开的整数  Xi  (-100  <   Xi  <   100),  Xi的绝对值,表示蚂蚁离开杆子左边端点的距离。正值表示头朝右,负值表示头朝左,数据中不会出现0值,也不会出现两只蚂蚁占用同一位置。其中,第一个数  据代表的蚂蚁感冒了。

输出格式

要求输出1个整数,表示最后感冒蚂蚁的数目。 

样例输入

5
-10 8 -20 12 25

样例输出

3

思路

因为蚂蚁速度相同,所以前面的蚂蚁不会被后面追上,又因为蚂蚁碰头后向后转,所以向左向右的蚂蚁数量是不变的,只要看总的蚂蚁数就行

定位感冒的蚂蚁的数量,然后找到前进方向上所有反方向行走的蚂蚁数量,就是被感染的蚂蚁数量,先找前进方向上的蚂蚁,如果没有蚂蚁发生碰撞,就只有这一只感染,如果有碰撞,则此蚂蚁掉头,再去找后面反方向前进的蚂蚁

因为所有的速度相同,所以后方的蚂蚁一定是由最初的蚂蚁感染的,最开始我没考虑到这一点,一直在找最边缘的蚂蚁,实际上根本没意义

#include<stdio.h>
#include<math.h>

int main() {
	int n;
	int i,j;
	int a[60];
	scanf("%d", &n);
	for (i = 0;i < n;i++) {
		scanf("%d", &a[i]);
		
	}
	int score = 1;//感染的蚂蚁数
	if (a[0] > 0) {//蚂蚁向右走
		for (i = 1;i < n;i++) {
			if (abs(a[i]) > a[0]&&a[i]<0) {//在右边向左走的蚂蚁全部感染
				score++;
			}

		}
		if (score == 1) {//没有与其他蚂蚁相遇就离开了
			printf("%d\n", score);
			return 0;
		}
		for (i = 1;i < n;i++) {//左边向右走的蚂蚁也感染
			if (a[i] > 0 && abs(a[i]) < abs(a[0])) {
				score++;
			}
		}
		
	}
	else if (a[0] < 0) {//蚂蚁向左走
		for (i = 1;i < n;i++) {
			if (a[i] < abs(a[0])&&a[i]>0) {//在左边向右走的蚂蚁全部感染
				score++;
			}
		}
		if (score == 1) {//没有接触
			printf("%d\n", score);
			return 0;
		}
		for (i = 1;i < n;i++) {//碰撞后掉头
			if (a[i]<0 && abs(a[i])>abs(a[0])) {//在右边向左走的蚂蚁全部感染
				score++;
			}
		}
		
	}
	printf("%d\n", score);

	return 0;
}

### 蓝桥杯六角填数问题的解法 #### 问题描述 蓝桥杯中的“六角填数”问题是要求在一个特定形状的六边形结构中填充数字,使每一条直线上数字之和相等。题目通常会预先设定部分数值,并要求求解某个未知位置的具体值。 --- #### 解题思路 该问题可以通过深度优先搜索 (DFS) 来解决。以下是具体的实现方法: 1. **初始化变量** 定义数组 `a` 存储当前状态下的数字分布,定义布尔型数组 `book` 记录哪些数字已被使用过。初始状态下,已知的位置被固定赋值并标记为不可重复选取[^1]。 2. **递归函数设计** 使用递归函数 `dfs(x)` 表示尝试填充第 `x` 个位置的数字。当所有位置都被成功填充时,验证是否满足条件——即每条直线上的数字总和一致。如果符合条件,则打印目标位置的结果。 3. **剪枝优化** 在每次递归调用前加入必要的约束条件以减少不必要的分支探索。例如,在某些特殊节点处提前终止递归可以显著提高效率[^2]。 4. **最终输出结果** 当找到合法配置后,直接提取所需的目标位置值作为答案返回。 --- #### 实现代码 下面提供了一个完整的 C 语言版本解决方案: ```c #include <stdio.h> #define N 15 int a[N]; int book[N]; void dfs(int x) { if (x == 1 || x == 2 || x == 12) { // 预设固定的三个点跳过处理 dfs(x + 1); return; } if (x > 12) { // 所有点均已完成分配 int t[6]; // 计算六个方向线段上的合计值 t[0] = a[1] + a[3] + a[6] + a[8]; t[1] = a[1] + a[4] + a[7] + a[11]; t[2] = a[2] + a[3] + a[4] + a[5]; t[3] = a[2] + a[6] + a[9] + a[12]; t[4] = a[8] + a[9] + a[10] + a[11]; t[5] = a[12] + a[10] + a[7] + a[5]; for (int i = 1; i < 6; ++i) { if (t[i] != t[i - 1]) { // 如果任意两组不匹配则退出本次试探 return; } } printf("%d\n", a[6]); // 输出第六位对应的星号位置值 return; } for (int i = 1; i <= 12; ++i) { if (!book[i]) { // 尝试未使用的候选数字 book[i] = 1; a[x] = i; dfs(x + 1); book[i] = 0; // 回溯恢复现场供后续测试其他可能性 } } } int main() { memset(book, 0, sizeof(book)); book[1] = 1; a[1] = 1; // 初始化第一个预置点 book[8] = 1; a[2] = 8; // 初始化第二个预置点 book[3] = 1; a[12] = 3; // 初始化第三个预置点 dfs(1); // 开始回溯算法流程 return 0; } ``` 此代码片段实现了基于 DFS 的穷举策略来寻找可能的答案集合之一[^3]。 --- #### 结果解释 运行以上程序将会得到多个潜在解答路径中的有效方案,并从中抽取指定位置(通常是编号为6的那个单元格)内的具体数值呈现出来。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值