题目描述
幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成
。
首先从1开始写出自然数1,2,3,4,5,6,....
1 就是第一个幸运数。
我们从2这个数开始。把所有序号能被2整除的项删除,变为:
1 _ 3 _ 5 _ 7 _ 9 ....
把它们缩紧,重新记序,为:
1 3 5 7 9 .... 。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11, 17, ...
此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,...)
最后剩下的序列类似:
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, ...
输入格式
输入两个正整数m n, 用空格分开 (m < n < 1000*1000)
输出格式
程序输出 位于m和n之间的幸运数的个数(不包含m和n)。
样例输入
30 69
样例输出
8
思路
先设一个自然数数组,再从头开始减去对应的幸运数和他的倍数的下标,组成新的数组
当这次的幸运数在m和n之间时就增加数字,减到n时记录数字个数
幸运数字1的情况单独设立,把所有偶数全部删去
#include<stdio.h>
int luckynum(int a[], int n, int num) {//减去幸运数
int k = a[num];//幸运数对应的下标
int right = 0;//舍去的幸运数
int i;
for (i = num;i + right < n;i++) {//从当前幸运数开始
if ((i + right) % k == 0) {//幸运数的倍数下标
right++;
}
if (i + right >= n)
break;
a[i] = a[i + right];//赋值
}
return i;
}
int main() {
int m, n;
int i;
scanf("%d %d", &m, &n);
int a[1000000] = { 0 };
for (i = 0;i <= n;i++) {//自然数
a[i] = i;
}
int score = 0;
if (m < 1 && n>1)//1在m和n之间
score++;
int N = n / 2 + 1;//a[]的总数
for (i = 1;i < N ;i++) {//幸运数字1
a[i] = 2 * i - 1;
}
for (i = 2;i < N;i++) {
if (a[i] >= n)
break;
if (a[i] > m && a[i] < n)//幸运数在范围内
score++;
int k = luckynum(a, N, i);
N = k;
}
printf("%d\n", score);
return 0;
}