深入了解常见的卷积神经网络模型

本文详细介绍了卷积神经网络(CNN)中的经典模型,包括LeNet-5、AlexNet和VGG。这些模型在计算机视觉领域有广泛应用,如图像分类和目标检测。文章提供了各模型的源代码示例,帮助读者理解并运用这些CNN模型。

卷积神经网络(Convolutional Neural Networks,简称CNN)是深度学习中最常用的神经网络模型之一。它在计算机视觉领域中取得了巨大的成功,并在图像分类、目标检测、图像生成等任务中发挥着重要作用。本文将介绍一些常见的卷积神经网络模型,并提供相应的源代码。

  1. LeNet-5
    LeNet-5 是一个经典的卷积神经网络模型,由Yann LeCun等人于1998年提出。它主要用于手写数字识别任务。下面是一个简化的 LeNet-5 模型的代码示例:
import torch
import torch.nn as nn
import torch.nn.functional as F

class LeNet5(nn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值