Mysql创建表时报错:

DROP TABLE IF EXISTS qrtz_simprop_triggers

CREATE TABLE qrtz_simprop_triggers (

sched_name varchar(120) NOT NULL COMMENT '调度名称',

trigger_name varchar(200) NOT NULL COMMENT 'qrtz_triggers表trigger_name的外键',

trigger_group varchar(200) NOT NULL COMMENT 'qrtz_triggers表trigger_group的外键',

str_prop_1 varchar(512) DEFAULT NULL COMMENT 'String类型的trigger的第一个参数',

str_prop_2 varchar(512) DEFAULT NULL COMMENT 'String类型的trigger的第二个参数',

str_prop_3 varchar(512) DEFAULT NULL COMMENT 'String类型的trigger的第三个参数',

int_prop_1 int(11) DEFAULT NULL COMMENT 'int类型的trigger的第一个参数',

int_prop_2 int(11) DEFAULT NULL COMMENT 'int类型的trigger的第二个参数',

long_prop_1 bigint(20) DEFAULT NULL COMMENT 'long类型的trigger的第一个参数',

long_prop_2 bigint(20) DEFAULT NULL COMMENT 'long类型的trigger的第二个参数',

dec_prop_1 decimal(13,4) DEFAULT NULL COMMENT 'decimal类型的trigger的第一个参数',

dec_prop_2 decimal(13,4) DEFAULT NULL COMMENT 'decimal类型的trigger的第二个参数',

bool_prop_1 varchar(1) DEFAULT NULL COMMENT 'Boolean类型的trigger的第一个参数',

bool_prop_2 varchar(1) DEFAULT NULL COMMENT 'Boolean类型的trigger的第二个参数',

PRIMARY KEY (`sched_name`,`trigger_name`,`trigger_group`),

CONSTRAINT `qrtz_simprop_triggers_ibfk_1` FOREIGN KEY (`sched_name`, `trigger_name`, `trigger_group`) REFERENCES `qrtz_triggers` (`sched_name`, `trigger_name`, `trigger_group`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='同步机制的行锁表';

 SQL 错误 [1064] [42000]: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'CREATE TABLE qrtz_simprop_triggers (
  sched_name varchar(120) NOT NULL COMMENT' at line 3;

根据报错提示,查看near附近是否有符号错误,检查好几遍也没看出来,以为是``符号不对。

测试执行了几遍才发现,单独执行创建表语句时不会报错,判断问题出现在DROP TABLE IF EXISTS语句。因为这个语句是从数据库里面导出的DDL,以为语法不会报错。问题在于DROP TABLE IF EXISTS qrtz_simprop_triggers这句话,后面少了个分号;。加分号执行成功。

DROP TABLE IF EXISTS qrtz_simprop_triggers;

流量分配算法机制是一个复杂的系统,旨在优化内容分发,提升用户互动和平台整体活跃度。该机制结合了多种算法模型与策略,以实现精准推荐和高效流量分配。 ### 流量分配算法的核心原理 1. **推荐算法模型** 的推荐算法基于经典的监督学习问题,使用公式 $ y = F(X_i, X_u, X_c) $ 来预测用户对内容的兴趣程度。其中: - $ X_i $ 表示内容特征(如视频标题、标签、类别等); - $ X_u $ 表示用户特征(如用户历史行为、兴趣标签等); - $ X_c $ 表示上下文特征(如时间、地理位置等)。 可实现的算法包括传统的协同过滤模型、监督学习算法Logistic Regression模型,以及基于深度学习的模型,如Factorization Machine和GBDT等[^4]。 2. **流量分配策略** 流量分配并非均匀分布,而是通过“限时可见”等特殊功能实现流量瞬爆。该功能允许内容在特定时间后自动隐藏,从而制造紧迫感,提升用户互动和内容曝光。为实现流量的快速增长,需采取以下策略: - **内容创新**:提供高质量、独特的内容以吸引用户关注; - **活动配合**:结合平台热点活动,增加内容曝光机会; - **预告宣传**:通过预告片或文案引导用户关注即将发布的内容; - **互动引导**:设计互动环节(如评论、点赞、分享)以提升用户参与度; - **数据分析**:通过实时监控和数据分析优化内容投放策略; - **社群联动**:利用社群资源扩大内容传播范围。 3. **流量调控机制** 流量分配还借鉴了QoS技术中的流量监管和流量整形机制。这些机制通过令牌桶算法流量进行规格度量,确保平台在流量高峰期仍能保持稳定的内容分发能力。流量限速同样采用相同的令牌桶处理机制,用于控制突发流量对服务器的冲击[^2]。 ### 流量分配的工作机制 1. **多环境流量分配** 在的服务器架构中,通常会有多套环境同时对外提供服务。为了应对灾备和业务量波动,需合理分配流量: - **主备环境流量调配**:主环境承担大部分流量,备用环境仅在主环境出现故障时接管流量; - **新环境流量调配**:新环境上线时需先分配少量流量进行验证,待稳定后再逐增加流量; - **周期性业务流量调配**:根据业务淡旺季动态调整流量分配,确保资源利用率最大化[^3]。 2. **动态调整与优化** 流量分配算法会根据实时数据动态调整推荐策略。例如,当某类内容的用户互动率突然上升时,算法会优先推荐该类内容以抓住热点流量。此外,还会根据用户的反馈(如点击、观看时长、评论等)不断优化推荐模型,提升内容匹配的精准度。 ### 示例代码:基于协同过滤的推荐算法实现 以下是一个基于协同过滤的推荐算法实现示例: ```python from sklearn.metrics.pairwise import cosine_similarity import numpy as np # 用户-内容评分矩阵 user_item_matrix = np.array([ [5, 3, 0, 1], [4, 0, 0, 1], [1, 1, 0, 5], [1, 0, 0, 4], [0, 1, 5, 4] ]) # 计算用户之间的相似度 user_similarity = cosine_similarity(user_item_matrix) def recommend_items(user_index, user_item_matrix, user_similarity): # 计算加权评分 scores = user_similarity[user_index].dot(user_item_matrix) / np.array([np.abs(user_similarity[user_index]).sum()]) # 过滤已评分的内容 user_ratings = user_item_matrix[user_index] scores[user_ratings.nonzero()] = 0 # 返回推荐内容索引 return scores.argsort()[::-1] # 为用户0推荐内容 recommendations = recommend_items(0, user_item_matrix, user_similarity) print("推荐内容索引:", recommendations) ``` ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值