自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 谱宽参数--程序备份·

import numpy as np import statsmodels.tsa.api as smt import math from sympy import * from scipy.fft import fft import matplotlib.pyplot as plt def specwid(data, H): """ 计算谱宽参数 :param data:数据 :param H:上限频率 :param fs:采样频率 :return:e谱.

2021-11-04 17:17:06 379

原创 python 汉明码

import numpy as np def func(X): ''' 返回G * H_T ''' H = np.array( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 1, 0, 0, 1, 1], [1, 0, 1, 0, 1, 0, 1]]) G1 = np.eye(4) G2 = [[X[0], X[1], X[2]] , [X[3], X[4], X[5.

2021-10-31 21:29:20 781

原创 代解决的代码4

import numpy as np import sympy from scipy.optimize import fsolve from sympy import * import math H = np.array( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 1, 0, 0, 1, 1], [1, 0, 1, 0, 1, 0, 1]]) def func(X): ''' 求校验矩阵H .

2021-10-28 19:03:32 154

原创 待解决的代码2

import numpy as np import sympy from scipy.optimize import fsolve from sympy import * H = np.array( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 1, 0, 0, 1, 1], [1, 0, 1, 0, 1, 0, 1]]) def func(X): ''' ''' H = np.ar.

2021-10-27 18:52:08 128

原创 待解决错误代码

import numpy as np import sympy from scipy.optimize import fsolve from sympy import * H = np.array( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 1, 0, 0, 1, 1], [1, 0, 1, 0, 1, 0, 1]]) G1 = np.eye(4) g_15,g_16,g_17 = symbols('g_1.

2021-10-27 16:41:29 125

原创 python fastICA

import numpy as np import math import random import matplotlib.pyplot as plt import scipy.io as scio from scipy.fft import fft ''' 函数名称:center_data 函数功能:对数据中心化:对输入矩阵的每个元素,都减去该元素所在行(每一行一共有m个元素)的均值 输入参数:X 要处理的矩阵,大小为(n,m) 返回参数:X_center 进行中心化处理之后的.

2021-10-24 20:57:09 643

原创 Python 对一维信号做小波分解

import pywt import scipy.io as scio import numpy as np from scipy.fft import fft import matplotlib.pyplot as plt def waveletdec(s,wname='db6',level=4, mode='symmetric'): N = len(s) w = pywt.Wavelet(wname) a = s ca = [] .

2021-10-24 18:48:12 1229 3

原创 【Matlab】使用LMS算法估计时间延迟

LMS算法程序: function [yn,W,en]=LMS(xn,dn,M,mu,itr) % LMS(Least Mean Squre)算法 % 输入参数: % xn 输入的信号序列 (列向量) % dn 所期望的响应序列 (列向量) % M 滤波器的阶数 (标量) % mu 收敛因子(步长) (标量) 要求大于0,小于xn的相关矩阵最大特征值的倒数 % itr 迭代次数...

2021-09-25 12:23:25 2580 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除