C a y l e y Cayley Cayley公式:一个完全图有 n n − 2 n^{n-2} nn−2棵无根生成树(可用prufer序列证明)
扩展 C a y l e y Cayley Cayley公式:被确定边分为大小为 a 1 , a 2 , ⋯ , a m a_1,a_2,\cdots, a_m a1,a2,⋯,am的连通块,则有 n m − 2 ∏ i = 1 m a i n^{m-2}\prod\limits_{i=1}^{m}{a_i} nm−2i=1∏mai种生成树
我们强制生成树中的一些边与原树中的边相同,求出生成树中至少有 x x x条边于原树中边相同的方案数 a n s x ans_x ansx,再容斥得到生成树中恰好有 x x x条边与原树中边相同的方案数 A n s x Ans_x Ansx。
A n s x = ∑ i = x ( − 1 ) i − x ( i x ) a n s i Ans_x=\sum\limits_{i=x}(-1)^{i-x}\dbinom{i}{x}ans_i Ansx=i=x∑(−1)i−x(xi)ansi
考虑一棵以