[XXSY] 构树(prufer序列,树上连通块DP)

本文探讨了Cayley公式在完全图中的应用,讲解了如何通过Prufer序列证明完全图有n(n-2)棵无根生成树。进一步,引入扩展Cayley公式,分析了确定边分块情况下生成树的计数问题。通过容斥原理,讨论了生成树中至少有x条边与原图相同的情况。文章详细阐述了树上连通块的动态规划解决方案,并给出了状态转移方程,同时提供了一道类似题目作为参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

C a y l e y Cayley Cayley公式:一个完全图有 n n − 2 n^{n-2} nn2棵无根生成树(可用prufer序列证明)
扩展 C a y l e y Cayley Cayley公式:被确定边分为大小为 a 1 , a 2 , ⋯   , a m a_1,a_2,\cdots, a_m a1,a2,,am的连通块,则有 n m − 2 ∏ i = 1 m a i n^{m-2}\prod\limits_{i=1}^{m}{a_i} nm2i=1mai种生成树

我们强制生成树中的一些边与原树中的边相同,求出生成树中至少 x x x条边于原树中边相同的方案数 a n s x ans_x ansx,再容斥得到生成树中恰好 x x x条边与原树中边相同的方案数 A n s x Ans_x Ansx

A n s x = ∑ i = x ( − 1 ) i − x ( i x ) a n s i Ans_x=\sum\limits_{i=x}(-1)^{i-x}\dbinom{i}{x}ans_i Ansx=i=x(1)ix(xi)ansi

考虑一棵以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值