MCP(模型上下文协议,Model Context Protocol)是一种标准化的通信层,使得像 Claude 或 GPT 这样的 AI 智能体(MCP 客户端)能够理解并与外部 API(MCP 服务器)进行交互。它为 API 提供了一种结构化的方式,用于描述其:
- 能力(工具)
- 输入模式(输入结构)
- 执行方法
从本质上讲,MCP 将你的代码转化为一个自描述的接口,使得像 Claude 这样的 AI 智能体能够无缝地进行交互——无需手动集成 API 或查阅复杂的 API 文档。
你可以为自己的应用创建 MCP 配置,使其更容易被其他开发者集成;或者,你也可以使用其他开发者公开的 MCP 配置,快速接入外部工具。例如,Razorpay 已经发布了其 MCP 服务器,使开发者几乎不需要额外工作就能将自己的大语言模型应用接入 Razorpay 的 API。在本文中,我们将重点讲解第一种方式:如何为自己的应用创建 MCP 配置。
1、为你的服务集成 MCP 服务器
将 MCP 服务器集成到你的服务中,可以使其以 MCP 格式暴露出来,从而让 AI 智能体能够智能地发现并使用它。具体实现方式取决于你当前的服务架构,以下是几种常见的做法。
方案一:将 MCP 集成到现有的 FastAPI 应用中
fastapi-mcp库简化了将 FastAPI 应用的路由暴露为 MCP 工具的过程。它会根据 FastAPI 的路由定义自动生成必要的 MCP 模式(schema),并挂载一个专用的 /mcp
端点,供 AI 智能体查询你的 API 能力。这样,AI 智能体(如 Claude 或 GPT)就可以访问 /mcp
端点,获取该服务的功能描述、输入格式和调用方式,实现自动理解和调用你的 API。
- 示例应用服务器
pip install fastapi-mcp
from fastapi import FastAPI
from fastapi_mcp import FastApiMCP
app = FastAPI()
@app.get("/bmi", operation_id="calculate_bmi", summary="this tool is used to calculate bmi based on weigth and height"))
def calculate_bmi(weight_kg: float, height_m: float):
return {"bmi": weight_kg / (height_m ** 2)}
mcp = FastApiMCP(app, name="BMI MCP", description="Simple application to calculate BMI")
mcp.mount()
以下是一个用于消费你服务器的 MCP 配置示例,也就是客户端如何声明它可以连接到你的 MCP 服务器:
{
"mcpServers": {
"bmi_mcp_server": {
"command": "mcp-proxy",
"args": ["http://127.0.0.1:8000/mcp"]
}
}
}
我在本文后面对此进行了深入讨论。
方案二:将 MCP 集成到你的 Python 项目中
mcp 库提供了一种更直接的方式,在 Python 脚本中定义 MCP 工具。它提供了像 @mcp.tool() 这样的装饰器,可以轻松地将函数标记为可调用工具,屏蔽了 MCP 规范的底层细节。
示例 Python 项目:
# pip install mcp
#my_script.py
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("My MCP Server")
@mcp.tool()
def add(x: int, y: int) -> int:
return x + y
if __name__ == "__main__":
mcp.run()
用于消费你服务器的环境中的 MCP 配置示例:
{
"mcpServers": {
"my-python-mcp-server": {
"command": "uv",
"args": [
"run",
"--with",
"mcp[cli]",
"mcp",
"run",
"my_script.py"
],
"description": "Runs the Python MCP server using the 'mcp' CLI provided by the 'mcp' library, executed with the 'uv' runner."
}
}
}
这里有一个简短的 YouTube 视频[3],可以帮助你完成设置。
方案三:将 MCP 集成到 Docker 容器中
使用 Docker 可以将你的应用、MCP 服务器及其依赖打包成一个可移植、隔离的环境。你的 MCP 服务器将在 Docker 容器中运行并暴露端口。Razorpay 的 MCP 配置示例[4]:
{
"mcpServers": {
"razorpay-mcp-server": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e",
"RAZORPAY_KEY_ID",
"-e",
"RAZORPAY_KEY_SECRET",
"razorpay-mcp-server:latest"
],
"env": {
"RAZORPAY_KEY_ID": "your_razorpay_key_id",
"RAZORPAY_KEY_SECRET": "your_razorpay_key_secret"
}
}
}
}
2、理解 MCP 配置
MCP 配置(通常是一个 JSON 文件)充当 MCP 客户端(如 Claude Desktop Agent)的使用说明书,用于描述如何启动并与 MCP 服务器通信。
3、连接 MCP 服务器
为了让 AI 智能体和开发工具能够使用你暴露的工具,它们需要知道如何启动并与 MCP 服务器通信。这正是 MCP 配置发挥作用的地方,它提供了必要的细节,如执行命令和 API 端点。
常见的 MCP 客户端:
- Claude Desktop Agent: 通过在 claude_desktop_config.json 文件中添加 MCP 服务器配置来进行配置。Claude 会读取这些配置,并使所描述的工具可供交互使用。
- 开发 IDE(Cursor、VS Code): 这些 IDE 可以配置为本地运行 MCP 服务器,使你能够在开发环境中直接测试和交互使用你的工具。
PS:国内开发者开源的Cherry Studio 也支持MCP服务接入。
4、端到端示例
我们将逐步演示如何创建一个简单的 FastAPI 应用,将 *加法函数* 暴露为一个 MCP 工具,并将其连接到 Claude Desktop Agent。
第 1 步:设置 FastAPI MCP 服务器
- 创建项目目录: 打开终端,为你的项目创建一个新目录:
mkdir sample-mcp-server
cd sample-mcp-server
- 创建虚拟环境: 使用虚拟环境来管理项目依赖是最佳实践。
python -m venv venv
source venv/bin/activate # On macOS/Linux
# venv\Scripts\activate # On Windows
- 安装依赖: 安装所需的库:
FastAPI
、fastapi-mcp
、uvicorn
(用于运行 FastAPI 的 ASGI 服务器)、pandas
(本示例中使用)、mcp_proxy
和python-dotenv
。mcp-proxy
用于通过 SSE 传输将请求代理到远程 MCP 服务器。例如,mcp-proxy
会包装你的真实服务器,将 Claude 基于 SSE 的请求转换成你的 FastAPI 应用能理解的普通 HTTP 请求,反之亦然。
pip install fastapi fastapi-mcp uvicorn pandas mcp_proxy python-dotenv
- 创建 *main.py* 文件: 在你的
sample-mcp-server
目录下创建一个名为main.py
的文件,并将以下代码粘贴进去:
from fastapi import FastAPI
from pydantic import BaseModel
from fastapi_mcp import FastApiMCP
import pandas as pd
from dotenv import load_dotenv
import os
load_dotenv()
app = FastAPI()
@app.get("/add", operation_id="add_two_numbers")
async def add(a: int, b: int):
"""Add two numbers and return the sum."""
summ = pd.DataFrame({"a": [a], "b": [b], "sum": [a+b]})
result = int(summ.loc[0, "sum"])
return {"sum": result}
mcp = FastApiMCP(
app,
name="Addition MCP",
description="Simple API exposing adding operation",
)
mcp.mount()
- 运行 FastAPI MCP 服务器: 在
sample-mcp-server
目录下打开终端,运行服务器:
uvicorn main:app --reload --host 127.0.0.1 --port 8000 --log-level debug
你应该会看到服务器启动,通常地址是 http://127.0.0.1:8000
第 2 步
- 找到 Claude Desktop 配置文件:
claude_desktop_config.json
的位置会根据操作系统和 Claude Desktop Agent 版本有所不同。MacOS 下的位置可能是:~/Library/Application Support/Claude/claude_desktop_config.json
注意:如果你还没有安装 Claude Desktop 应用,需要先安装。
- 用文本编辑器打开该文件。如果没有 mcpServers 键,需要手动添加。
- 将你的 MCP 服务器配置添加到 claude_desktop_config.json: 修改文件,加入你的服务器详情。确保 command、args 和 cwd 正确指向 mcp-proxy 可执行文件及你的项目目录。
{
"mcpServers": {
"addition-tool-mcp": {
"command": "/Users/{user_name}/sample-mcp-server/venv/bin/mcp-proxy",
"args": ["http://127.0.0.1:8000/mcp"],
"cwd": "/Users/{user_name}/sample-mcp-server",
"env": {} #add if any
}
}
}
- 重启 Claude Desktop Agent: 关闭并重新打开 Claude Desktop Agent 应用程序。你应该能在以下位置看到正在运行的 MCP 服务器:Claude 设置 > 开发者
第 3 步:在 Claude 中与你的 MCP 工具交互
打开 Claude: 启动 Claude Desktop Agent。与 Claude 交互: 你现在可以让 Claude 执行“加两个数字”的操作。试试以下提示语:
- “Add 5 and 10”
- “What is the sum of 23 and 42”
- Claude 应该能识别你的“addition-tool-mcp”工具,根据 fastapi-mcp 提供的 MCP 描述理解其功能,并通过 mcp-proxy 调用你 FastAPI 应用的 /add 接口。你将在 Claude 的回复中看到加法结果。
结论
将 MCP 与 FastAPI 集成,为构建能够被 AI 智能体无缝利用的智能应用打开了令人兴奋的可能性。随着 MCP 生态系统的不断壮大,掌握这一集成将成为开发者构建下一代 AI 驱动解决方案的重要技能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。