在生成式人工智能迅猛发展的今天,“谁能驾驭智能体”已经成为划分人才竞争力的新标准。尤其是在财经、社科等非技术学科中,传统的教育模式难以满足AI技能快速迁移与应用的现实需求。中财数碳打造的“龙马书卷”专家级智能体实训平台,正是对这一痛点的系统性回应:它不仅降低了智能体开发的技术门槛,更通过一整套面向高等教育与企业场景的课程体系,推动AI能力从“工具使用”迈向“能力建构”。
这一平台的本质,不是教人如何使用一个工具,而是帮助用户建立起理解大模型、构建智能体、部署实用应用的完整路径,真正实现“AI能力转化为实际成果”。在未来的职场与科研环境中,那些既懂专业、又懂AI的人才,将不再是特例,而是主流。这正是职业教育与智能体教育融合的深层逻辑,也是中财数碳今天所做努力的现实意义。
文科专业一直以来都是高等教育的重要组成部分,涵盖文学、历史、哲学、语言、法学、经济学、管理学等诸多领域,每年吸引着大量学子投身其中,毕业生数量也逐年攀升。然而,随着就业市场的竞争日益白热化,文科生的就业之路变得愈发艰难。在大模型浪潮的冲击下,传统的文科专业技能和知识储备已难以满足当下企业对人才的多元需求,仿佛一座座冰山横亘在文科生的就业航道上。
在就业市场高度信息化的今天,越来越多文科毕业生发现,哪怕简历写得再好,依然无法跨越算法筛选的门槛;即便通过初筛,面对“是否掌握AI工具”“能否参与数据工作流程”的提问,也常常陷入尴尬。这种无形的技术壁垒,正逐步将一批本应在表达、判断、分析方面大放异彩的人才,挡在了数字经济的门外。
一方面,专业技能门槛不断提高。许多优质岗位开始要求求职者掌握新兴技术,比如数据分析、人工智能应用、编程基础等。这些岗位以往可能更多地倾向于理工科背景的毕业生,但如今,随着跨学科融合的发展趋势,文科专业背景的毕业生在面对这些岗位要求时,往往显得力不从心。他们的传统专业技能,如文学赏析、历史研究、哲学思辨等,在这些技术导向的岗位面前,光芒黯淡,难以成为竞争力的核心要素。
图:猎聘发布的就业报告显示技术类岗位需求仍遥遥领先
另一方面,企业招聘的理念也在发生深刻转变。在当今复杂多变的市场环境下,企业不再满足于单一专业技能的人才,而是更加倾向于选择具备创新能力、数据分析能力和跨学科知识的复合型人才。他们希望能够招到能够在瞬息万变的市场中迅速适应新环境、解决新问题、创造新价值的人才。而传统文科教育模式下培养出的学生,往往在这方面的竞争力相对不足,难以满足企业多元化的需求。这使得文科生在求职过程中,投出的大量简历如石沉大海,参加的多场面试也屡屡受挫,焦虑感如同潮水般不断攀升。
越来越多的学生开始意识到:要想在新时代的职场中重新站稳脚跟,不能仅靠“专业”标签本身,而要寻找“专业以外”的升级路径——掌握一种能够放大文科优势、又能跨界链接AI的工具或方法,成为当下破局的关键。
以新闻传播专业为例,过去,新闻写作、编辑校对等传统技能是该专业毕业生的就业“王牌”。但如今,企业不仅希望他们能写出有深度、有温度的报道,还要求掌握数据分析工具,能够挖掘新闻线索、预测热点趋势,甚至参与新闻推荐算法的优化。然而,大多数新闻传播专业学生在技术技能上的掌握相对薄弱,导致他们在求职中面临较大挑战。许多毕业生不得不拓展求职方向,转向公关、营销等相关领域,但即便如此,竞争依旧激烈。
再看法学专业,法学专业毕业生的传统就业方向如律师、法官、检察官等,对专业知识和实践经验的要求极高,且司法考试等职业资格门槛本身就很严格。在大模型时代,随着法律科技的不断发展,一些法律检索、文件起草、案例分析等基础性工作逐渐被人工智能所辅助甚至替代。同时,企业法务岗位也更加倾向于招聘具备法律与商业、法律与技术等跨学科知识背景的复合型人才,以应对日益复杂的商业法律环境和新兴技术带来的法律问题,如人工智能的知识产权保护、数据隐私与安全等。这使得传统法学专业毕业生的就业空间进一步受到挤压,他们不得不在激烈的竞争中寻找新的突破口。
1、建立AI驱动的学习曲线
面对困境,文科生并非没有突围希望,关键在于打造“一专多能”的能力结构,承担更多复合型岗位职责,寻找与大模型时代相契合的就业路径。但必须正视的是,当前大多数高校的文科教育体系尚未建立起成熟的AI教育体系。即使有部分课程引入AI工具,也大多停留在入门级别,难以对接实际业务需求,学生对“如何将AI用于专业表达”仍然一头雾水。
在此背景下,中央财经大学数字财经研究中心首创的“专家级智能体”,成为文科生破局的关键所在。作为具有理工文多学科专业背景的专家,中心主任陈波博士凭借其在人工智能大模型、数字财经等领域的深厚专业背景,以及对AI教育的深刻洞察,带领团队成功打造了这一创新成果。
这一实训课的设计初衷,并非培养程序员,而是帮助非技术背景的专业人才,快速掌握智能体构建的核心能力,让文科生也能以自己的方式参与AI时代的生产力变革。经过大量的实践应用与验证,“专家级智能体”在多个商业级场景中取得了显著成效,占据了领先地位,其价值和潜力已被广泛认可。在这一过程中,中心也培养出中国首批“专家级智能体工程师”,为文科生在新兴技术领域打开了一条全新路径。
这一智能体的核心竞争力,在于对业务流程、大模型原理、语料库结构的深入理解,以及对编程能力的适当掌握。它要求使用者既能准确识别业务需求与痛点,又能理解并灵活运用大模型技术,结合高质量语料进行有效调优,从而完成高度契合实际需求的智能化应用。同时,具备基础编程能力可使使用者更好地实现个性化定制,使智能体在不同业务场景中高效落地。也正因如此,该类复合型人才极为稀缺,成为企业竞相争夺的新资源。
上图展示了传统学习曲线与 AI 辅助学习曲线的对比。传统学习方式追求平缓上升,进度相对缓慢但稳定;而 AI 辅助学习则可以实现更陡峭的上升曲线,帮助学习者在短时间内实现快速进步。这种差异主要源于 AI 工具能够提供即时反馈、个性化指导和高效的知识整合能力。
2、什么是专家级智能体
“专家级智能体”是由中央财经大学数字财经研究中心提出的一种面向文科经管类专业人员的人工智能应用模式,将业务知识与尖端大模型技术深度融合,旨在打造能够精准适配并高效解决各领域专业问题的智能解决方案。它强调从业者需具备 “懂业务、懂大模型、懂语料库、懂一点代码” 的综合素养,通过这种能力体系,文科生可以快速搭建智能体应用,涵盖智能体调优、工作流编排、专业人工智能知识库构建等全流程。
陈波主任秉持 “授之以渔” 理念,致力于培养未来专家级智能体专家,推动数字财经教育发展。目前,“专家级智能体”已在多个商业场景中成功落地,如: 5 分钟输出 1.2 万字高质量行业分析报告、应用于贵阳大数据交易所、中国电子口岸数据中心的专家级客服等,为相关领域带来巨大变革,同时培养出国内首批专家级智能体工程师,有效填补了这一新兴领域的人才缺口,为大模型时代各行业创新发展提供了强大助力。
3、如何成为超级个体
这种教育模式不仅正在重塑高等教育的课程体系,也在改变未来的职业路径。据中央财经大学新闻网报道,财经研究院推出的“财经人学AI”公益教育平台,旨在帮助财经专业人士拥抱大模型技术,提升专业能力。该平台提供了一系列学习资源和工具,专注于帮助财经专业师生掌握最新的大型语言模型(LLM)技术。通过这个平台的学习,财经专业人士可以期待在工作效率上实现3-5倍的提升,减少60%的无效时间,缩小团队规模40%-50%,同时增加75%的工作乐趣。
在这个过程中,许多文科学生开始意识到,智能体实训课程并非是某种“技术转行”,而是一种“专业能力放大的路径”。当你掌握了构建一个AI智能体的能力,你的思考、表达、写作、分析能力将不再是一个人的力量,而是一个系统协作的结果。
与此同时,中财数碳通过“龙马书卷”平台,已吸引了校内外数十名师生的积极参与,并正在与中央财经大学其他专业学科进行交叉融合,形成“专家级智能体+X”的创新模式,促进各个学科的智能化发展。这表明,新一代AI职业教育与高等教育融合模式正在逐步成型。
面对人工智能对传统岗位结构的持续冲击,龙马书卷平台所提供的不仅是工具培训,更是一种面向未来的知识生产方式。在这个“AI+专业”融合的新场域中,真正的核心竞争力不再是单一技能,而是驾驭AI进行高质量表达与判断的能力。这正是智能体教育的使命所在:赋能每一个领域的专业者,成为新时代的“智能体架构师”。
4、专家级智能体工程师是文科生新的职业路径
在数字经济加速演进的背景下,生成式人工智能技术正重塑高等教育与职业教育的边界。中央财经大学数字财经研究中心的实践表明,文科专业人才在学术研究与职业发展中,普遍存在“专业强、工具弱”的结构性短板,而中财数碳打造的“龙马书卷”实训项目正为这一问题提供系统性解决方案。
该项目面向文科生、研究人员和政企单位,提供从零基础到实战应用的全流程专家级智能体开发培训服务,致力于构建“非编程背景也可构建生产级AI”的教育架构,其核心价值在于使文科生也能快速构建专业级的智能体应用。
平台支持内容增强型知识插槽(CEKS)机制与RAG增强检索架构,使用户即使没有技术背景,也能快速搭建具备分析与推理能力的专业级智能体,满足教学、科研、办公、决策等多种场景需求。这种可迁移、可交付、可复用的能力体系,正在成为未来技能教育的重要支柱。
文科生并不缺思辨能力和表达能力,缺的是将这些能力“技术化”“工具化”的途径。而专家级智能体正是这样一座桥梁,将专业知识转化为可操作、可迁移的智能系统能力。在高等教育改革不断深化的今天,专家级智能体技术正在为文科类人才打开一条全新的职业道路,正在推动“AI+专业”的高阶复合型人才走向主流。这并不是让文科生成为程序员,而是让他们成为真正懂 AI、用得起 AI、用得好AI的“专业 + 技术”复合型人才,走上数字时代的主流舞台。
5、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。