【Agent智能体搭建流程】以股票分析AI助手为例详解搭建过程(Dify+DeepSeek)

1、项目简介

基于 Dify低代码开发平台 与 DeepSeek-R1大模型,构建一个智能股票分析助手(股票分析Agent)。目标:实现自然语言交互式股票查询、技术指标分析、多维度数据可视化及风险预警,降低普通投资者使用专业金融工具的门槛。

典型场景
  1. 散户投资者:通过对话快速获取个股实时行情、K线形态解读、财务指标对比,形成次日及周度的投资预测报告。
  2. 财经自媒体:一键生成包含技术面/基本面/情绪面分析的内容。
解决痛点
  • 数据分散:整合行情数据、财报数据、舆情数据于单一入口。
  • 分析门槛高:将MACD、RSI等技术指标解读转化为自然语言结论。
  • 响应延迟:通过DeepSeek-R1的高效推理能力实现快速报告生成。
核心功能
  1. 智能问答
  • 支持模糊查询(例:“茅台最近走势如何”“光伏板块龙头股”)
  • 自动关联同行业可比公司数据
  1. 多维度分析报告
  • 技术面:自动识别K线形态(如“头肩顶”“金叉死叉”)
  • 基本面:PE/PB/ROE等指标同业对比
  • 消息面:整合财经新闻情感分析
  1. 风险预警
  • 异动监测(量价突变、大宗交易)
  • 财报暴雷概率预测

2、 股票分析AI助手的原理介绍

规划-记忆-工具-行动闭环

图片

规划,负责完成任务拆解、推理逻辑设计及执行路径规划。基于用户输入(如“分析特斯拉未来3个月股价趋势”),Dify的大语言模型(如GPT-4)通过预定义的提示词(Prompt)识别意图,拆解为“获取实时股价数据”“分析财报信息”“整合行业新闻”等子任务。动态调整执行计划:根据中间结果(如财报数据异常)自动调整后续步骤,例如优先调用新闻分析工具而非技术指标工具。

记忆,存储短期交互记录与长期知识,支持上下文关联与个性化服务。短期记忆:通过Dify的会话管理功能记录当前对话上下文(如用户偏好“只关注技术面分析”),确保多轮交互连贯性。长期记忆:知识库集成:上传行业研报、历史股价数据等结构化文档,构建RAG(检索增强生成)管道,供模型实时检索引用。

工具使用,集成外部API与数据处理模块,扩展Agent能力边界。数据获取类:获取技术指标(如MACD、KDJ)、成交量及股价等API,使用用户定义(指定使用缠论)或自有的分析逻辑进行分析。调用Dify支持的文生图模型生成股价趋势可视化图表。

工具调度逻辑:Function Calling模式针对支持此功能的模型(如GPT-4),直接映射工具调用指令。ReAct框架:对不支持Function Calling的模型,通过“思考-行动-观察”循环选择工具。

行动,执行工具调用并生成最终响应,支持多模态输出与自动化操作。通过提示词模板(如Markdown表格)结构化输出股票的分析结果。

3、前置准备

  • Dify社区版或云服务版。

  • 申请DeepSeek-R1 API Key : https://account.coreshub.cn/signup?invite=SXBtZzZmWHM=

    DeepSeek-R1、V3满血版注册就送5000万token。申请完成后使用OpenAI-API-compatible添加模型。

    图片

  • biyingapi.com(金融数据接口)

    MENU点击证书购买-找到免费版,点击立即获取,保存好证书。

    图片

4、 Dify 平台实践步骤

  • 编排获取股票数据工作流并发布为工具

创建空白应用-选择工作流-命名为获取近30交易日成交数据。

图片

添加开始节点,并添加两个变量:url、time

图片

添加http请求节点,将url变量添加到url 中。

图片

添加代码执行节点,截取近30交易日的成交数据。(代码我放到DSL文件中了)

图片

添加结束节点,输出代码执行节点的处理结果。

图片

点击发布,发布更新并发布为工具。添加调用名称、描述、工具入参。

其中工具入参分别为:

url:该股票的查询url,例如:https://api.biyingapi.com/hszbl/fsjy/你的证书ID

time:查询时间格式为时间点 %Y-%m-%d

图片

参照上述流程分别创建近30天kdj查询工具、近30天macd查询工具等。

  • 创建股票分析AI分析助手agent

创建空白应用-选择Agent,并输入名称。

图片

配置模型、温度、top-p、最大标记

图片

输入提示词

图片

添加工具

图片

测试一下吧

图片

DSL文末领取

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值