在检索增强生成(RAG)技术中,嵌入模型扮演着至关重要的角色,它是连接非结构化数据与机器理解的桥梁。想要深入掌握 RAG 技术,首先需要透彻理解嵌入模型的相关知识。本文将从嵌入的基本概念出发,详细介绍嵌入模型,并探讨如何选择最适合的嵌入模型,为你构建起关于 RAG 中嵌入模型的完整知识框架。
一、什么是嵌入?
嵌入(Embedding)是一种将高维、非结构化的数据(如文本、图像、音频等)转化为低维、稠密的向量表示的技术。这些向量能够捕捉原始数据的语义信息和特征,使得机器可以像处理数值一样对这些数据进行计算和分析。
以文本数据为例,“猫” 和 “狗” 这两个词,在自然语言中它们都是常见的动物,具有一定的关联性。通过嵌入技术,它们会被转化为两个向量,这两个向量在空间中的距离会比较近,因为它们的语义相关度较高;而 “猫” 和 “汽车” 这两个语义关联度较低的词,转化后的向量在空间中的距离则会相对较远。
这种向量表示的优势在于,它能够将原本难以量化的语义信息转化为可计算的数值,从而支持各种机器学习任务,如相似度计算、聚类分析、分类等。在 RAG 中,嵌入技术能够将用户的查询和知识库中的文档都转化为向量,通过计算向量之间的相似度,快速找到与查询相关的文档,为后续的生成步骤提供有力支持。
二、什么是嵌入模型?
嵌入模型是实现嵌入技术的核心工具,它是一种经过训练的机器学习模型,能够自动将输入的非结构化数据映射为对应的嵌入向量。
嵌入模型的工作原理基于深度学习技术,特别是神经网络。在训练过程中,模型会学习数据中的潜在模式和语义关系。以文本嵌入模型为例,它通常会基于大量的文本语料进行训练,通过分析词语在语境中的共现情况、语法结构等信息,逐渐掌握语言的规律。当输入新的文本时,模型会根据训练学到的知识,生成能够准确反映该文本语义的向量。
常见的文本嵌入模型有 Word2Vec、GloVe、BERT 的衍生模型(如 Sentence-BERT)等。不同的嵌入模型在设计理念、训练数据和适用场景上可能存在差异。例如,Word2Vec 主要关注词语级别的嵌入,能够生成单个词语的向量;而 Sentence-BERT 则专门针对句子级别的嵌入进行优化,可以生成整个句子的向量,更适合处理句子或短文本的语义表示。
在 RAG 系统中,嵌入模型的性能直接影响检索的准确性和效率。一个优秀的嵌入模型能够生成高质量的嵌入向量,准确捕捉文本的语义,使得检索到的文档与用户查询高度相关,从而为生成更精准的回答奠定基础。
三、如何选择最适合的嵌入模型?
选择适合的嵌入模型是 RAG 系统构建中的关键环节,需要综合考虑多个因素,以下是一些重要的考量点:
(一)数据类型和场景
不同的嵌入模型适用于不同的数据类型和场景。如果处理的是文本数据,需要明确是词语、句子还是长文档的嵌入。对于短文本或句子级别的任务,Sentence-BERT 等专门针对句子嵌入的模型可能是更好的选择;如果需要处理长文档,可能需要选择能够较好处理长文本语义的模型,或者采用一些分段嵌入再融合的策略。此外,如果数据涉及特定领域(如医学、法律),领域特定的嵌入模型可能比通用模型表现更好,因为它们在该领域的训练数据上进行了优化,能够更准确地捕捉领域内的专业术语和语义。
(二)嵌入向量维度
嵌入向量的维度是一个重要参数。维度过高可能会增加计算成本和存储开销,降低系统的运行效率;维度过低则可能无法充分捕捉数据的语义信息,影响检索精度。需要在精度和效率之间找到平衡。一般来说,对于大多数 RAG 场景,几百维的向量(如 384 维、768 维)是比较常见的选择,但具体维度还需根据实际情况进行测试和调整。
(三)模型性能
模型的性能主要体现在检索的准确性上,可以通过一些评估指标(如准确率、召回率、F1 值等)来衡量。可以使用公开的基准数据集(如 STS 基准测试集)对候选模型进行测试,比较它们的性能表现。同时,也可以在自己的实际数据上进行测试,观察模型对特定数据的适配程度。
(四)计算资源和效率
嵌入模型的运行需要消耗一定的计算资源,包括训练(如果需要微调)和推理阶段。对于资源有限的场景,需要选择轻量级的模型,这些模型通常参数较少,计算速度快,能够在普通的硬件设备上高效运行。而如果有充足的计算资源,并且对性能要求极高,可以考虑使用更复杂、参数更多的模型。
(五)开源性和可定制性
开源的嵌入模型具有更高的灵活性,允许用户进行微调以适应特定的需求。如果需要根据自己的数据对模型进行优化,选择开源且支持微调的模型会更加合适。此外,开源模型通常有更活跃的社区支持,便于解决使用过程中遇到的问题。
总之,选择最适合的嵌入模型需要结合具体的应用场景、数据特点、性能需求和资源状况等多方面因素,通过充分的测试和评估,找到性价比最高的模型。
总结
本文围绕 RAG 中的嵌入模型展开,从基础原理到选型方法进行了全面阐述。
首先,明确了嵌入是将高维、非结构化数据转化为低维、稠密向量的技术,其核心价值在于将难以量化的语义信息转化为可计算的数值,为 RAG 中查询与文档的匹配提供了基础。
其次,嵌入模型作为实现嵌入技术的工具,基于深度学习训练而成,能将非结构化数据映射为嵌入向量,不同模型如 Word2Vec、Sentence-BERT 等在适用场景上各有侧重,其性能直接影响 RAG 系统检索的准确性和效率。
最后,在选型方面,需综合考虑数据类型和场景、嵌入向量维度、模型性能、计算资源和效率以及开源性和可定制性等因素,通过测试和评估找到最适合的模型,以保障 RAG 系统的整体表现。
总之,深入理解嵌入模型的相关知识,并科学选型,是构建高效、精准 RAG 系统的关键所在。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。