大模型推理工程师的工作围绕模型落地应用展开,需要融合技术理论与工程实践能力,是兼具深度与广度的综合性岗位。以下为该岗位所需的核心技能与拓展能力:
一、核心编程语言与工具链
- 精通Python(用于模型部署脚本开发、数据预处理流程搭建)和C++(针对高性能推理引擎的底层优化),熟悉两种语言的混合编程技巧。
- 熟练运用深度学习框架的推理接口,如TensorFlow Lite、PyTorch JIT,以及专门的推理加速框架(ONNX Runtime、TensorRT),能根据场景选择最优工具链组合。
二、深度学习基础理论
- 深入理解神经网络的正向传播机制、反向传播原理,掌握不同网络架构(CNN、RNN、Transformer)的推理特性——例如Transformer的注意力机制在推理时的计算复杂度优化要点。
- 熟悉激活函数(ReLU、Sigmoid等)的数值计算特性,以及优化器(SGD、Adam)在推理阶段对模型参数的影响规律。
三、推理优化核心技术
- 掌握模型压缩技术:包括结构化/非结构化剪枝(减少参数冗余)、INT8/FP16量化(降低计算精度以提升速度)、知识蒸馏(用小模型模拟大模型性能)。
- 擅长工程化加速方案:如动态批处理(根据输入长度动态调整计算批次)、模型并行与张量并行(解决超大模型显存限制)、推理结果缓存机制(针对高频重复查询)。
四、硬件适配与加速
- 具备GPU编程基础,熟悉CUDA核心函数与线程块调度逻辑,能使用cuBLAS、cuDNN库进行算子优化;了解AMD GPU的ROCm生态者更具优势。
- 掌握异构计算场景适配,包括在CPU(x86/ARM架构)、FPGA、ASIC等硬件上的模型部署策略,例如针对移动端ARM架构的NNAPI优化。
五、领域知识与任务适配
- 在自然语言处理领域,需理解分词、词向量映射、上下文编码等环节对推理效率的影响,熟悉对话系统、文本生成等任务的流式推理实现。
- 拓展至多模态场景时,需掌握图像、语音等数据的预处理流程,以及跨模态模型推理时的输入对齐技术。
六、数据工程能力
- 能设计高效的数据流水线,处理TB级别的推理输入数据,包括异常值检测、格式标准化、特征动态筛选等环节。
- 掌握推理结果的后处理技巧,如置信度校准、错误样本分析,通过反馈数据持续优化推理链路。
七、软技能与职业素养
- 具备跨团队协作能力,能与算法研发(对接模型输出)、产品经理(明确性能指标)、运维工程师(保障部署稳定性)有效沟通。
- 保持技术敏锐度,跟踪前沿推理技术(如动态计算图优化、神经架构搜索在推理中的应用),参与技术社区交流(如ONNX开源项目)。
随着大模型向轻量化、专用化发展,推理工程师还需关注新兴技术如联邦推理(保护数据隐私)、边缘推理(低延迟场景)等,通过理论与实践的结合,持续提升模型在产业落地中的效率与稳定性。
八、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
九、为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
十、大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
适用人群
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。