【时区】交易系统,两个特点

日内短线,就用时区!

【时区】交易系统,两个特点:

1、极简(任何人都能理解)

2、顺势(突破交易)

对于做日内短线的用户来说没有什么比时区更好用

【时区】正在成为全球无数交易者坚守的投资体系

图片

时区系统能帮我们做什么?

A、时区把金融市场分3个时段:亚洲时区、欧洲时区、美洲时区。美洲时区,是华尔街开始工作的时间,市场波动最剧烈。其次,欧洲时区,波动较大。只做欧、美大波动突破行情,是【时区EA】给我们带来的极简法则!

图片

B、时区提供明确的入场位。欧盘突破、美盘突破。

C、即便是永久免费的半自动时区,也可以为您实现全自动的设置止盈、止损点、以及追踪 止损功能,完美解决了风控与盈亏比问题。

你仅需开仓,其余交给【时区系统】内置算法会根据行情真实波动率(20天平均值)计算止损位,并通过自定义"盈亏比"来推算出止盈位置,且含有追踪止损的功能)当你下单的那一刻,系统就会自动帮你设置好,无需再手工计算和设置,让你的风险管理更完美、高效率!(系统智能之处在于:如果过去几天波动很小,那么止损、止盈也相应会比较小,如果过去几天波动较大,那么止损和止盈也自动会变大。)

图片

一、安装

图片

打开MT5(或MT4)软件,下图以MT5软件为例

图片

左上角,点“文件”,“打开数据文件夹”,“MQL5”(MT4软件则选择MQL4),“Experts”,双击打开此文件夹,把“安装文件1”(Huifei)复制粘贴到此文件夹当中(MT4软件则把唯一的文件复制粘贴到此文件夹,此时MT4的所有安装步骤已经完成)。MT5还需要把另一个“安装文件2”(hfdll)复制粘贴到“Libraries”文件夹当中。

图片

回到MT5(或MT4)软件中,在“EA交易”中,鼠标右键“刷新”,即可看到Huifei(时区系统),双击或拖拽到K线图,进行设置:

(上图)在“普通”菜单中,勾选“允许算法交易”(此处MT4软件是“常用”菜单中,勾选“允许实时自动交易”),在“依存关系”菜单中,勾选“允许DLL导入”(MT4无此步骤)。

“确定”即可。

图片

二、设置与技巧

1)时间参数

最新版本的MT4和MT5的时区系统,都有自动的时间校准功能,统一按照北京时间定义,亚盘6-14,欧盘14-20,美盘20-6,不需要再更改时间。

2)风控参数设置

盈亏比建议设置成1-2,波幅百分比止损一般30比较合适,也可以根据自己情况调大调小。

3)均线参数设置(默认参数即可)

图片

均线参数并不重要,因为参数的大小并非影响交易结果的主要因素,所以无需花费心思研究参数,盈利的核心实际上在后面的资金管理和风险管理中,也就是下单量与止盈止损。

4)MT4(自动交易)MT5(算法交易)打开,才有自动止盈止损、移动止损功能。

图片

“确定”即可。

图片

三、半自动【时区】使用规则

时区系统运用九大规则

1、交易品种:建议黄金(新手仅限黄金)

2、每天仅交易2次,欧盘美盘各一次

3、不持仓隔夜

4、看15分钟k线图

5、下单方式:市价单或者挂突破单(buy stop/sell stop)

6、下单量:建议资金量/10000(手)

7、止损点:开自动交易自动设置

8、追踪止损点=止损点

9、固定止盈点=止损点的2倍

其中止盈止损风控也可以自行根据自己风险承受能力自行设置,指标用法分享供参考。

图片

四、全自动【时区EA】使用技巧与常见问题

1、MT5全自动【时区EA】如何确定是否已经启动?

图片

1)MT5上方“算法交易”安装状态点击变为绿色三角形,

2)点击中间按钮:“开启(关闭)时区EA”

3)开启状态显示:√,并且显示剩余天数。

2、全自动【时区EA】如果开启了,并且条件满足了,没有开单是什么原因?

1)时区系统加载时,“自动交易”是否勾选

2)算法交易”是否打开成三角绿色

3)K线图的时区界面是否忘记点“开启时区EA”

4)参数中的计算方式,是否选择“瞬时模式”。如果选择了“趋势确认模式”再未收盘或者收盘价没有突破的情况下,不会开仓。

5)参数“每个时区每种用法最大开仓单数”,设置为1,并且本时区已经开过仓,则也不会开仓。

3、全自动【时区EA】为什么会有重复开单的情况?

1)打开了多个K线图,并且每一个图表都加载了相同的品种。

2)时区EA三大用法打开了2个或3个,条件同时满足了。

3)参数“每个时区每种用法最大开仓单数”,参数大于1,且“一次一单”的开关为false关闭状态,多次触发开仓条件,会重复开单。

图片

五、全自动【时区EA】交易逻辑是什么?

与半自动用法几乎一致,提炼了时区5大用法精髓,内嵌三套模型在全自动【时区EA】中:

A、经典用法(欧、美时段突破)

图片

B、均线用法(欧、美时段回调开仓)

图片

C、美盘(长期趋势)

图片

上述三大用法,可以通过单独的开关控制。默认仅经典用法。

图片

六、时区EA有效性怎么样?

下图案例:经典用法。

图片

欧洲时区突破亚洲时区高点,系统自动开仓做多,盈亏比1:1,自动止盈平仓。(美洲时区同样是做突破交易)

图片

上图:历史数据,过去12个月收益率148%

图片

夏普比率:3.36

图片

七、【时区】的短板

那么【时区】的最大风险在哪里呢?

1、连续止损(顺势策略遇到窄幅整理可能连续止损,挫伤交易者信心)

2、止盈过小(胜率不变的情况下,止盈越小,长期越难赚钱)

3、仓位过重(重仓是一切亏损的根源)

任何策略、方法、模型都不是零风险的,金融交易市场的本质是风险与收益对等。要降低风险,则收益会受限;要高回报,也必须有风险承受能力。

图片

八、拥有正版【时区EA】的6大理由:

1、大师级(趋势)交易理念,助你从容驾驭行情

2、杜绝情绪化(交易),严格按照交易计划开平仓。

3、无需盯盘(解放双手),100%由计算机程序执行交易。

4、一流风控。所有订单含止损、追踪 止损。

5、长期趋势模型,不设止盈,可一战封神。

6、官方永久免费升级。

风险及售后提示:

A、软件属于特殊商品,一旦购买无法退换。

B、任何策略皆有风险,时区不保证盈利。

【获取时区,联系我们】

汇飞量化,让交易更简单(QuantixFly,Make Trading Easy)!

<think>好的,用户现在想了解如何比对两个DataFrame中的timestamp。首先,我需要明确用户的需求。比对timestamp可能有不同的目的,比如检查数据是否同步、找出时间差、或者合并数据。用户可能是在处理时间序列数据,比如传感器数据、日志记录或者交易记录,需要确保两个数据集的时间戳一致或有特定的关系。 接下来,我需要考虑用户可能的场景。例如,用户可能有两个来自不同源的数据集,想要合并它们,但需要确保时间戳对齐。或者用户可能在验证数据完整性,检查是否有缺失的时间点。还可能是在处理实时数据时,需要同步两个数据流的timestamp。 然后,我应该思考常见的比对方法。通常包括检查时间范围是否重叠、时间间隔是否一致、是否有缺失值,或者找出共同的时间点。此外,用户可能需要对齐数据,比如使用merge或join操作,或者进行时间戳的差值计算。 需要注意的潜在问题包括时区不一致、时间戳格式不同(比如字符串和datetime对象)、精度不同(秒、毫秒、微秒)以及数据频率不一致。这些都需要在比对前处理,比如转换时区、统一格式、调整精度或重采样。 接下来,我需要组织步骤。首先,确保timestamp列是datetime类型。然后,检查基本信息如时间范围、间隔。接着,比较两个DataFrame的时间戳,找出交集或差异。可能还需要可视化时间线来直观比对。最后,根据需求合并或调整数据。 可能用到的Python库包括pandas和numpy。例如,使用pd.to_datetime转换时间戳,利用intersection方法找共同时间点,或者使用merge进行对齐。对于时间差,可以计算两个时间戳序列的差异。 用户可能还需要处理重复的时间戳,或者处理不同频率的数据。例如,一个DataFrame是每秒一次,另一个是每五分钟,这时候可能需要重采样后再比对。 最后,要提醒用户注意时区问题,建议始终使用UTC时间以避免混淆。同时,展示一些示例代码会有帮助,让用户更清楚如何实际操作。比如,如何检查时间范围,如何找到交集,如何合并数据等。确保代码中的时间戳使用正确的格式,并处理可能的异常情况,如空值或无效时间戳。</think>比对两个DataFrame的时间戳列时,可以通过以下步骤进行系统化分析: --- ### 一、基础准备 ```python import pandas as pd # 确保时间戳列已转换为datetime类型 df1['timestamp'] = pd.to_datetime(df1['timestamp']) df2['timestamp'] = pd.to_datetime(df2['timestamp']) ``` --- ### 二、关键比对维度 #### 1. 时间范围验证 ```python print("DF1时间范围:", df1['timestamp'].min(), "至", df1['timestamp'].max()) print("DF2时间范围:", df2['timestamp'].min(), "至", df2['timestamp'].max()) ``` #### 2. 时间间隔分析 ```python def check_interval(series): diffs = series.diff().dropna() return diffs.min(), diffs.max(), diffs.mean() print("DF1时间间隔(最小/最大/平均):", check_interval(df1['timestamp'])) print("DF2时间间隔(最小/最大/平均):", check_interval(df2['timestamp'])) ``` --- ### 三、深度比对方法 #### 1. 交集/差集计算 ```python common_ts = pd.Series(list(set(df1['timestamp']) & set(df2['timestamp'])), name='common') only_in_df1 = df1[~df1['timestamp'].isin(df2['timestamp'])]['timestamp'] only_in_df2 = df2[~df2['timestamp'].isin(df1['timestamp'])]['timestamp'] ``` #### 2. 时间线可视化(需matplotlib) ```python import matplotlib.pyplot as plt plt.figure(figsize=(12, 4)) plt.plot(df1['timestamp'], [1]*len(df1), 'bo', label='DF1') plt.plot(df2['timestamp'], [0.5]*len(df2), 'ro', label='DF2') plt.yticks([]) plt.legend() plt.show() ``` --- ### 四、高级对齐策略 #### 1. 时间合并基准 ```python merged = pd.merge(df1, df2, on='timestamp', how='outer', indicator=True) print("合并状态分布:\n", merged['_merge'].value_counts()) ``` #### 2. 时间差矩阵 ```python time_diff_matrix = df1['timestamp'].values.reshape(-1,1) - df2['timestamp'].values.reshape(1,-1) print("最小时间差:", np.min(np.abs(time_diff_matrix))) ``` --- ### 五、异常处理清单 1. **时区统一**:使用`tz_convert()`处理时区差异 2. **精度对齐**:通过`.floor('1S')`统一到秒级精度 3. **缺失值标记**:`df1['timestamp'].isnull().sum()` 4. **重复值检测**:`df1['timestamp'].duplicated().sum()` --- ### 六、典型应用场景 1. 传感器数据同步验证 2. 交易系统订单与成交记录匹配 3. 日志文件时间序列对齐 4. 多设备数据采集时间校准 通过以上方法可以系统诊断时间戳的匹配程度,并根据业务需求选择合适的时间对齐策略。建议优先使用时区标准化的UTC时间格式,可显著降低后续处理复杂度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值