该算法以欧氏距离为基础,首先辨识最远的聚类中心,然后确定其他的聚类中心,直到无新的聚类中心产生。最后将样本按最小距离原则归入最近的类。
例:样本分布如图所示。
见图所示,为
200万优质内容无限畅学
立减 ¥