- 博客(289)
- 收藏
- 关注
原创 深度学习部署工程师--31(车辆、行人3D视觉识别-SMOKE 3D)教你从python到C++运行
SMOKE是一种单阶段端到端的单目3D目标检测方法,直接通过预测关键点位置来估计3D目标信息。文章详细介绍了SMOKE模型的ONNX导出和TensorRT引擎构建过程,包括环境配置、依赖库安装、模型转换等步骤。重点解析了SMOKE的后处理解码过程,涉及深度信息恢复、3D中心点投影计算、目标体积估计和偏航角计算等关键步骤,并提供了相关数学公式和C++实现代码。该方法通过直接回归3D框参数,避免了传统方法中2D检测+后处理的复杂流程。
2025-07-25 23:46:04
7
原创 深度学习部署工程师--30(modnet+TensorRT+ubuntu)背景混合与软抠图
MODNet(Mobile-Optimized Domain Adaptation Network)是一种轻量级、高效的人像抠图模型,专为移动端与资源受限设备优化。与传统依赖 trimap 的抠图方法不同,MODNet 采用端到端的深度学习结构,实现了无需手工辅助标注的实时软分割(Soft Segmentation),尤其擅长处理头发、边缘等复杂细节。该模型基于 MobileNetV2 构建,具有小模型体积、高推理速度和良好精度,适用于图像/视频合成、AR背景替换、视频剪辑等场景。
2025-07-25 22:31:10
8
原创 深度学习部署工程师--29(NVIDIA TAO Toolkit 从集成到实战的 LPRNet 培训和部署教程)
本文介绍了基于NVIDIA TAO Toolkit实现LPRNet车牌识别系统的完整流程。首先在NGC Catalog中搜索并选择合适的预训练模型,分析其适用范围和训练要求。然后搭建TAO Toolkit容器训练环境,准备数据并配置spec文件进行模型训练。最后详细说明模型部署方案,包括通过DeepStream加载模型、构建推理流程等步骤。文中提供了关键文档链接和问题解决技巧,帮助开发者快速实现从模型训练到实际应用部署的全过程。
2025-07-25 17:58:06
7
原创 深度学习部署工程师--28(车牌检测识别+Tensor+YOLOv5检测车辆+YOLOv4-tiny检测车体(双模型)+源码)下
基于DeepStream的车牌识别系统实现 本文介绍了使用DeepStream框架实现车牌识别系统的详细步骤。系统采用三阶段和二阶段两种运行模式: 系统运行步骤 环境准备:启动DeepStream容器并安装必要依赖 模型转换:使用tao-converter将etlt模型转为engine格式 视频处理:从视频中提取样本帧用于校准 构建程序:编译并生成可执行文件 运行系统:支持RTMP/RTSP流媒体输入 关键技术 使用YOLOv5s模型进行车牌检测 采用LPRNet进行车牌识别 支持多分辨率输入和批量处理 实
2025-07-25 17:47:55
227
原创 深度学习部署工程师--27(车牌检测识别+Tensor+YOLOv5检测车辆+YOLOv4-tiny检测车体(双模型)+源码)上
本文介绍了基于Deepstream的车牌检测与识别系统开发流程。主要内容包括:1)使用YOLOV5进行车体检测,YOLOV4-tiny进行车牌检测;2)采用NVIDIA TAO工具包训练LPRNet车牌识别模型;3)使用脚本模拟生成中文车牌数据用于模型训练;4)详细说明了数据准备、模型训练、可视化评估等关键步骤;5)重点阐述了TAO工具包的优势及其在深度学习应用开发中的重要作用。该系统通过优化模型结构与训练流程,显著提升了车牌识别的准确率和推理效率,具有较高的工程应用价值。
2025-07-25 11:47:48
8
原创 深度学习部署工程师--26(人体姿态估计+Tensor+轻量化+单线程、多线程比较+源码(包含jetsonNX版本和jetson nano版本))
HRNet通过多分辨率并行结构持续保持高分辨率特征表示,在人体姿态估计等任务中表现出色。其核心在于bottom-up的HigherHRNet算法,利用heatmap检测关键点并通过Associative Embedding实现点对分组。导出模型后,可编译为TensorRT engine进行高效推理。相比传统方法,HRNet减少了信息丢失,在遮挡场景下仍能保持较高精度,同时具备较好的计算效率。
2025-07-24 00:24:33
176
原创 深度学习部署工程师--25(jetson nano和jeson NX+人脸属性(性别、年龄、表情、是否戴口罩)+TensortRT+C/C++)包源码
本文介绍了在Jetson NX和Nano设备上部署AI模型的完整流程。主要内容包括: 模型转换与部署 使用tao-converter工具转换ETLT模型为TensorRT引擎 详细步骤说明如何部署人脸检测模型(facenet)、属性识别模型(性别/年龄/情绪/口罩检测) Jetson环境配置 提供Nano设备上的编译注意事项(修改CUDA架构等) 包含环境配置参考链接 代码实现 展示C++推理代码框架 说明TensorRT引擎加载和执行流程 提供输入输出数据处理方法 资源获取 提供百度网盘下载链接,包含完整
2025-07-23 23:28:36
12
原创 深度学习部署工程师--24(人脸属性(性别、年龄、表情、是否戴口罩)+TensortRT+C/C++)包源码
本文摘要:基于TensorFlow框架训练了人脸属性识别模型(性别、年龄、表情、口罩检测),通过tf2onnx工具转换为ONNX格式并优化,最终部署到TensorRT环境。实验表明,各模型在测试集上表现良好,准确率超过90%。系统采用模块化设计,包含数据预处理、模型训练、格式转换和集成测试全流程,支持实时视频流分析。关键步骤包括:1)构建卷积神经网络模型;2)ONNX格式转换与简化;3)TensorRT引擎优化;4)多模型联合推理。实验数据表明各任务识别准确率:性别96.7%、年龄93.2%、表情89.5%
2025-07-22 17:59:53
186
3
原创 深度学习部署工程师--23(Facenet人脸检测与人脸关键点检测与添加口罩+TensortRT+C/C++)
本文介绍了基于NVIDIA TAO工具包和PyTorch的人脸检测与识别系统实现。主要内容包括: 人脸检测:使用TAO预训练的FaceDetect模型,输入736x416x3张量,输出边界框和置信度,需后处理NMS/DBScan。提供模型转换和测试流程。 人脸识别训练: 数据预处理:清洗错误人脸样本,通过特征距离比较筛选 数据增强:为人脸添加口罩,通过关键点检测扭曲匹配 使用80万样本训练Facenet模型(A100需20小时) 模型部署: 导出PyTorch模型为ONNX格式 转换为TensorRT引擎优
2025-07-22 00:15:42
205
2
原创 深度学习部署工程师--22 (DeepStream Service Maker C/C++ 开发教程)
本文介绍了基于NVIDIA DeepStream SDK的AI视频分析应用开发流程。主要内容包括:1) 环境搭建与CMake项目配置;2) 基础管道应用开发,包括视频源、推理、显示等元素的创建与链接;3) 元数据处理方法,通过缓冲区探针实现对象计数功能;4) 两种构建管道方式(代码/YAML配置)的比较;5) 性能调优关键参数与策略。文章提供了完整的代码示例,从简单目标检测管道到复杂元数据处理,帮助开发者快速掌握DeepStream核心功能。
2025-07-20 21:40:38
13
2
原创 深度学习部署工程师--21(deepstream原理详解)
本文深入解析DeepStream SDK的元数据处理机制。首先介绍GStreamer基础结构GstBuffer与DeepStream元数据的关联方式,重点阐述核心元数据结构NvDsBatchMeta的创建流程和获取方法。详细说明两种自定义元数据添加方式:在Gst-nvstreammux插件前后分别采用NvDsUserMeta和NvDsMeta实现。特别指出DeepStream 5.0+版本在NvDsObjectMeta中新增的重要字段及其用途。最后通过数据流图示清晰展示元数据在整个处理流程中的传递路径,为开
2025-07-20 21:36:53
12
原创 深度学习部署工程师--20(jetson NX/Jetson nano +deepstream+yolov5目标跟踪+tensorRT部署--》人车目标识别与意外闯入--》停车计时)包源码
本文介绍了在Jetson NX和Nano设备上安装DeepStream SDK的步骤。对于Jetson NX,需要先安装相关依赖库和librdkafka,然后下载并安装DeepStream 6.2 SDK。对于Jetson Nano,由于不支持6.2版本,需安装DeepStream 6.0.1 SDK,并配置相应的依赖环境。两种安装过程都包括解压SDK包、运行安装脚本和执行ldconfig命令。文中还提供了生成YOLOv5引擎文件的说明,以及相关代码和预训练模型的网盘下载链接。
2025-07-20 21:21:56
17
2
原创 深度学习部署工程师--19(ubuntu+deepstream+yolov5目标跟踪+tensorRT部署--》人车目标识别与意外闯入--》停车计时)包源码 下
本文介绍了基于DeepStream的人车目标识别与跟踪项目实战。课程内容包括:1)使用Docker或本地环境运行DeepStream,通过YOLOv5模型进行目标检测;2)实现视频流输入处理和多目标跟踪,支持RTSP推流输出;3)对比NvDCF和IOU两种跟踪算法的效果差异;4)讲解DeepStream应用开发方法,包括Metadata数据结构和GStreamer核心概念。项目提供了完整的配置文件和代码示例,帮助开发者快速构建智能视频分析应用。
2025-07-20 21:17:31
148
3
原创 深度学习部署工程师--18(ubuntu+deepstream+yolov5目标跟踪+tensorRT部署--》人车目标识别与意外闯入--》停车计时)包源码 中
本文介绍了使用DeepStream进行YOLOv5目标检测的实战流程。首先通过TensorRT转换ONNX模型为engine文件,可选择是否启用INT8量化。接着配置DeepStream环境,包括替换生成的engine文件、修改视频输入输出路径等。重点解析了DeepStream配置文件deepstream_app_config_windows_display_write.txt的各项参数,包括源文件设置、RTSP推流配置、OSD显示参数等。最后提供了完整的运行命令,支持视频文件处理、结果保存和RTSP推流功
2025-07-19 23:43:16
23
2
原创 深度学习部署工程师--17(ubuntu+deepstream+yolov5目标跟踪+tensorRT部署--》人车目标识别与意外闯入--》停车计时)包源码 上
本文介绍了NVIDIA DeepStream视频分析框架的架构、特性及安装指南。DeepStream是基于GPU和TensorRT的开源框架,支持多路视频流实时处理,提供目标检测、跟踪等功能。其核心采用GStreamer图架构,通过优化内存管理和硬件加速插件(如nvinfer、nvtracker等)实现高效分析。安装部分详细说明了在Ubuntu系统上安装GStreamer、librdkafka以及DeepStream SDK 6.0的步骤,包括依赖项配置和编译过程。该框架适用于智能城市、交通监控等场景,开发
2025-07-19 16:02:37
36
8
原创 深度学习部署工程师--16(yolov5+jeson nano/jetson xavier NX+TensorRT开发)
摘要:本文对比了Jetson NX和Nano平台运行YOLOv5模型的性能表现。测试结果显示,Jetson NX在多线程下运行YOLOv5n模型可达到94FPS,而Nano平台仅实现26FPS。文章详细记录了不同配置下的性能数据,包括单线程/多线程、推流开关状态等测试场景,并提供了硬件环境参数和代码修改说明。针对Nano平台,特别指出需要修改CMakeLists.txt以适配Maxwell架构GPU。相关代码和依赖安装指南也一并提供,为边缘设备部署目标检测模型提供了实践参考。
2025-07-19 11:11:40
22
4
原创 深度学习部署工程师--15(TensorRT工作原理与开发流程)
TensorRT 核心机制与内存管理详解 摘要:本文深入解析TensorRT的核心工作机制,重点介绍生命周期管理、错误处理和内存优化三大关键方面。在对象生命周期方面,TensorRT采用工厂模式管理对象依赖关系,特别强调构建引擎后安全销毁中间对象的能力。错误处理机制通过Logger和ErrorRecorder接口实现多级日志和错误追踪,并处理CUDA异步错误特性。内存管理部分详细阐述构建阶段临时内存分配、运行阶段设备内存优化策略(包括内存共享和暂存重用),以及自定义分配器实现方法。文章还介绍了CUDA延迟加
2025-07-19 10:26:01
17
原创 深度学习部署工程师--14(TensorRT详细教程+原理详解)
本文详细介绍了TensorRT的功能原理与编程模型。TensorRT分为构建和运行两个阶段:构建阶段通过Builder接口优化模型并生成Engine,支持ONNX等多种模型转换方式;运行阶段通过Runtime接口执行推理,支持多上下文并行处理。文章重点解析了网络定义、构建器配置、优化过程和插件系统等核心组件,并详细阐述了TensorRT支持的数据类型(包括FP32/16/8、INT8/4等)及其量化技术。同时介绍了动态形状配置方法,使模型能够适应运行时输入维度变化。TensorRT通过深度优化实现高效推理,
2025-07-19 10:15:15
11
原创 深度学习部署工程师--13(TensorRT+int8量化+多线程+Yolov5的plugin原理讲解)包源码
本文详细介绍了YOLOv5模型在TensorRT中的优化实现,重点解析了检测头替换为TensorRT自定义检测头的原因及实现方法。主要内容包括:1)TensorRT插件开发流程,包括插件类、创建类的实现和注册方法;2)核心方法实现要点,如configurePlugin、enqueue及序列化/反序列化;3)多线程Pipeline示例,展示生产者-消费者模型在推理加速中的应用。文章通过源码分析揭示了将YOLOv5检测头替换为4个TensorRT检测头(类别、分数、位置等)的技术原理,为模型优化提供了实践指导。
2025-07-19 10:02:26
130
5
原创 深度学习部署工程师--12(tensorRT+int8+cmake+rtsp推流+ubuntu->指定区域内行人检测实战和聚众人群检测)下
摘要:本文介绍了目标检测中的聚众人群检测与多线程优化技术。首先通过K-means聚类算法实现人群聚集检测,使用射线法判断人员是否进入指定区域。然后详细分析了程序各环节耗时,包括预处理、推理、后处理等步骤,并对比了720P/1080P视频及RTSP流在不同配置下的性能表现。实验结果显示,开启推流会显著增加处理时间,1080P视频处理FPS约为40帧,而RTSP流处理FPS降至25帧左右。文章建议通过多线程流水线优化来提升整体处理效率。
2025-07-18 23:34:13
28
6
原创 深度学习部署工程师--11(tensorRT+int8+cmake+rtsp推流+ubuntu->指定区域内行人检测实战和聚众人群检测)上
本文介绍了视频流媒体传输与目标检测的实践流程。首先讲解了RTSP协议的基本原理及安装方法,包括使用rtsp-simple-server搭建服务。接着演示了通过Docker端口映射将容器内的视频流输出到本地,并利用FFmpeg和VLC进行拉流查看。重点展示了YOLOv5目标检测模型推理后视频的RTMP推流过程,包括环境配置、比特率设置和网络地址映射。文中提供了详细的命令行操作步骤和常见问题解决方法,如端口占用处理、Docker权限配置等,帮助读者实现从视频推流到目标检测结果可视化的完整流程。
2025-07-18 21:52:38
31
6
原创 深度学习部署工程师--10(cuda理论学习)
摘要 本文介绍了CUDA并行计算平台和TensorRT插件开发的基本知识。第一部分讲解了CUDA编程基础,包括kernel函数定义、内存管理、线程组织方式(thread/block/grid)以及向量加法的实现示例。第二部分详细说明了TensorRT插件的开发流程,重点介绍了YOLOv5解码插件的实现方法,包括插件类继承、工厂模式实现、注册流程以及核心的configurePlugin和enqueue方法。文章通过代码示例展示了如何利用GPU加速深度学习中的特定计算任务,为开发者提供了实用的CUDA和Tens
2025-07-18 11:12:42
26
原创 深度学习部署工程师--9(cmake+yolov5行人检测+tensorRT部署+int8量化)
本文介绍了深度学习模型量化技术,重点对比了INT8和FP16量化方法。通过实验数据展示了不同推理方式的速度差异:CPU推理93fps,CUDA推理147fps,TensorRT推理166fps,TensorRT+INT8量化可达220fps。文章详细讲解了TensorRT中实现INT8量化的两种校准算法(熵校准和最小最大值校准),并提供了校准数据读取器的代码实现,包括构造函数、getBatch()、readCalibrationCache()和writeCalibrationCache()等关键方法。最后指
2025-07-18 10:38:20
287
6
原创 深度学习部署工程师--8(docker+TensorRT部署到推理+yolo人体检测)下
本文介绍了YOLOv5模型通过TensorRT加速部署的流程。首先需要检查磁盘空间,确保有30GB可用。文章对比了不同推理方式的性能:int8量化+TensorRT可达200FPS,纯TensorRT为166FPS,CUDA为147FPS,CPU为93FPS。重点讲解了将YOLOv5模型导出为ONNX格式的详细步骤,包括修改Detect类的forward方法以移除decode运算,使用git patch批量修改代码,安装必要的依赖库,以及通过onnx-graphsurgeon工具修改ONNX图结构。最终目标
2025-07-18 09:34:45
347
5
原创 深度学习部署工程师--7(docker+TensorRT部署到推理+yolo人体检测)上
摘要:本文介绍了基于YOLOv5的人员检测项目部署流程。重点包括:1)系统需求,建议为根目录预留30GB空间;2)两种Pytorch安装方式(conda虚拟环境与docker容器),推荐使用docker方式简化配置;3)YOLOv5环境配置及预训练模型测试;4)自定义数据集训练方法,包括使用labelImg标注工具和数据集目录结构组织。特别说明:若空间不足可跳过TensorRT部分直接使用本地安装,或直接使用作者提供的pt权重文件进行部署。文中提供了详细的命令行操作步骤和目录结构示意图。
2025-07-17 23:54:48
34
2
原创 深度学习部署工程师--6(ubuntu+TensorRT部署到推理)
本文介绍了使用TensorRT进行深度学习模型推理优化的完整流程。首先阐述了TensorRT作为NVIDIA推出的高性能推理框架,可通过模型结构重组优化加速推理过程。随后详细讲解了环境配置步骤,包括CUDA驱动安装与版本匹配问题,重点演示了在Ubuntu系统下通过命令行安装和验证NVIDIA驱动的过程。文章还分享了作者在版本兼容性问题上遇到的挑战,如TensorRT 10.2与库函数不兼容,最终选择降级到TensorRT 8并调整CUDA版本的经验。通过nvidia-smi命令验证驱动安装成功,为后续Ten
2025-07-17 23:12:24
153
1
原创 深度学习部署工程师--5(基础篇cmake+调用 OpenCV 官方提供的轻量级人脸检测模型)
本文介绍了在VSCode中使用CMake调试和OpenCV图像处理的具体配置方法。主要内容包括:1)配置tasks.json和launch.json实现CMake项目的Debug模式调试;2)OpenCV基础操作,包括图片/视频/摄像头读取显示、图像格式转换、滤波处理、形状调整及绘制功能;3)RTSP视频流搭建与解码;4)人脸检测示例,使用OpenCV提供的轻量级MobileNet-SSD模型。文章通过具体代码示例详细说明了各项功能的实现方法,并提供了完整的配置文件和参数说明。
2025-07-17 18:04:29
33
1
原创 深度学习部署工程师--4(基础篇cmake)
本文系统介绍了CMake构建工具的基础知识和实践应用。首先讲解了C++编译过程的四个阶段:预处理、编译、汇编和链接,并对比了静态链接库(.a)和动态链接库(.so)的特点。然后详细阐述了CMake的核心功能,包括项目配置、目标生成、库文件管理、变量控制等,通过多个示例演示了如何创建可执行文件、生成和链接静态/动态库。文章还深入解析了CMake中PUBLIC/PRIVATE/INTERFACE关键字的作用范围,以及条件控制、函数宏定义、安装配置等高级特性。最后以OpenCV项目为例,展示了如何通过find_p
2025-07-17 16:01:19
18
1
原创 深度学习部署工程师--3(基础篇)
本文摘要: 本课程主要讲解C++中数组与容器的使用,重点介绍了类的封装、构造函数、智能指针和STL容器等核心概念。内容涵盖:1)类的声明与封装,包括访问控制、构造函数重载和初始化列表;2)内存管理,包括浅/深拷贝、智能指针(unique_ptr/shared_ptr)的使用;3)模板编程,包括函数模板和类模板;4)STL容器(array,vector,list,set,map等)及其特性对比;5)迭代器与算法。通过具体代码示例演示了如何实现数据封装、资源管理和容器操作,帮助理解C++面向对象编程的核心机制。
2025-07-17 15:03:27
7
原创 yolov8-生成论文曲线
本文提供了一个用于比较多个YOLOv8模型训练结果的Python脚本。该脚本通过读取保存在不同文件夹中的results.csv文件,绘制模型在训练过程中的性能指标曲线,包括精确度(precision)、召回率(recall)、mAP50和mAP50-95等评估指标,以及各种损失函数的变化趋势。用户需要修改names列表指定要比较的模型文件夹路径,并确保CSV文件路径正确。脚本会生成两幅图表:metrics_curve.png展示模型评估指标,loss_curve.png展示训练和验证过程中的损失变化。该工具
2025-07-17 11:51:25
11
原创 YOLOv8-COCO指标转换
本文介绍了将YOLO格式数据集转换为COCO格式并评估模型性能的完整流程。首先需将YOLO格式的标注数据转换为COCO格式,通过修改classes、image_path等参数适配不同数据集。然后使用YOLO模型对验证集进行预测并保存结果为JSON格式。最后通过比较预测结果和转换后的COCO标注文件,使用COCO官方评估指标和TIDE工具进行性能分析,生成包含AP、AR等指标的报告及错误分析图表。整个过程实现了从数据准备到模型评估的完整闭环,为计算机视觉任务提供标准化的性能评估方案。
2025-07-17 11:48:41
20
1
原创 YOLOv8优化基础版--无需添加复杂模块,结构带动几乎为0却能有较好的优化
本文介绍了几种针对YOLO模型的小目标检测优化方法,通过调整yaml文件实现无需修改源码的改进。重点探讨了延迟下采样、大核卷积和宽度因子三种优化策略:1)延迟下采样通过调整卷积层顺序可提升小目标检测精度0.008,但会增加计算量;2)大核卷积能扩大感受野但可能降低小目标检测精度;3)增大宽度因子(0.55→0.75)可显著提升mAP 0.02,适用于同时存在大小目标的任务。实验表明这些方法在不同场景下各有优劣,需根据具体任务特点选择组合使用。
2025-07-17 11:41:15
20
1
原创 深度学习部署工程师--2(基础篇)
摘要:本文讲解C++编程基础,重点包括指针概念(地址与值的区别、初始化与解引用)、函数使用(声明、传参、重载)、数组与指针关系、动态内存管理(new/delete操作)等内容。通过示例代码演示了指针传递参数、变量交换、const指针、指针返回等核心概念,强调内存管理的注意事项(如配对使用new/delete、防止内存泄漏)。附带课程资料网盘链接供实践练习。
2025-07-13 23:47:50
14
原创 深度学习部署工程师-1(基础篇)
这节课主要是对部署端进行一个基础学习,如果你主要进行模型优化,而不打算进行板端部署,可以跳过本节。等你接触到RKNN的部署再回头学习。本人在接触这节课前是已经刷过C++的部分知识了,面向有一定的基础的。如果你基础薄弱的话,可能理解会有些困难。本节课部分图片来自网络资源,如有侵犯我会修改。
2025-07-13 22:01:04
15
原创 深度学习算法工程师:剪枝-稀疏训练-微调的关系与实现(一)
本文探讨了神经网络剪枝与稀疏训练的关键技术。主要内容包括:1) 稀疏训练通过L0/L1正则化约束权重,动态调整掩码实现权重置零;2) 剪枝方法分为权重剪枝和结构化剪枝,前者只置零权重,后者会移除通道/层;3) 实验对比显示,训练后微调的剪枝模型准确率可达98.59%,结构化剪枝能减少参数量;4) 指出当前方法的局限:权重置零不直接减少计算量,需后续优化才能实现加速。文章强调不同剪枝策略的适用场景,为模型压缩提供了实践参考。
2025-07-08 14:44:44
41
原创 突破推理瓶颈:基于ONNX部署的两组核心优化策略与实战全解,加速你的AI模型
文章摘要: 在AI模型部署中,ONNX格式成为连接训练与应用的关键桥梁。本文深入探讨两组核心优化策略:激活函数替换和卷积-BN层融合。通过将复杂激活函数替换为ReLU等高效版本,并利用数学方法将BN层参数融入前级卷积,可显著提升推理速度。这些优化通过减少计算量、简化模型结构,实现了精度与效率的平衡,为模型在各类硬件上的高效部署提供了实用解决方案。文章从原理到实践,为开发者提供了可操作的加速指南。
2025-07-05 09:42:15
51
原创 YOLOv11性能飞跃:深度融合iRMB注意力机制,实战教程助你突破检测极限!--文末附上实操源码!
摘要:iRMB(Inverted Residual Mobile Block)是一种创新的轻量级混合架构,巧妙结合了CNN的局部特征提取能力与Transformer的全局依赖性建模优势。该模块基于深度可分离卷积(DW-Conv)和改进型扩展窗口多头自注意力(EW-MHSA),通过"简单但有效"的设计理念,在参数数量、计算效率和模型性能间取得最佳平衡。实验证明,基于iRMB构建的EMO模型在ImageNet-1K、COCO2017等基准测试中表现优异,iPhone14上运行速度比EdgeN
2025-07-04 10:07:46
26
1
原创 Mamba-YOLOv8的核心:VSSBlock (MambaLayer) 的深度解析--文末附上实操链接
高效的长距离依赖捕获:Mamba的核心SSM结构结合多向扫描,使其能够像Transformer一样有效地捕捉全局上下文信息,而避免了自注意力机制带来的二次方计算成本。兼顾局部与全局信息:VSS块通过深度可分离卷积保留了对局部纹理细节的感知,同时通过SS2D引入了强大的全局建模能力。这种结合使得模型在处理各种尺度的目标时都能表现出色。线性计算复杂度:Mamba的线性复杂度使其能够处理更高分辨率的图像,这对于需要精确检测小目标或处理超高清视频流的场景尤为有利。
2025-07-04 10:06:53
27
1
原创 YOLOv8排球垫球智能计数系统实战:基于多目标跟踪与动态区域划定的技术突破--文末附上实操链接
本文提出了一种基于YOLOv8双模型的排球垫球自动计数系统,通过目标检测与人体关键点检测协同工作,结合动态区域划定技术,实现高精度运动计数。系统采用YOLOv8检测排球和运动员,YOLOv8-Pose捕捉17个人体关键点,并利用Shapely几何引擎进行碰撞检测。实测准确率达98.7%,响应时间小于50ms,支持实时调整计数区域和可视化结果展示。文章详细介绍了从环境配置、数据准备、模型训练到实际应用的全流程技术实现,包括双模型协同检测、动态区域划定、垫球动作识别等核心算法,以及专业训练视频分析案例。
2025-07-04 10:05:05
35
原创 YOLOv5魔改三十弹:深度融合iRMB反向残差注意力机制,引爆移动端目标检测性能新飞跃--文末附上实操链接
摘要:目标检测模型YOLOv5迎来重大升级,集成ICCV 2023最新iRMB模块,在保持轻量化的同时提升性能。iRMB创新性地融合CNN和Transformer优势,通过元移动模块(MMB)统一设计框架,解决了传统CNN缺乏全局建模和Transformer计算复杂的问题。实验表明,基于iRMB的EMO模型在ImageNet分类、SSDLite目标检测和DeepLabv3语义分割任务中表现优异,1M参数模型即实现71.5%分类精度,5M参数模型在移动端计算量(<6G FLOPs)下达到接近80%精度。
2025-07-04 10:04:13
17
1
【计算机视觉】基于PaddleOCR的车牌检测与识别系统设计:环境配置、模型训练及预测部署-h含源码-数据集等等
2025-06-21
【计算机视觉】基于YOLOv5的安全帽检测系统:环境搭建、模型训练与评估
2025-06-21
【计算机视觉】基于LeNet-5的人脸口罩识别系统:从模型训练到树莓派部署全流程详解
2025-06-21
### 【计算机视觉】人脸检测技术综述:传统方法与深度学习模型对比及应用场景-含源码-教程
2025-06-21
【计算机视觉】基于LabelImg的目标检测图像标注工具使用指南:涵盖YOLO与Pascal VOC格式数据集创建
2025-06-21
一个从零开始构建计算机视觉解决方案的完整教学资源,专注于中国传统毛笔字图像的自动化识别与分类 本指南将深度解析如何利用**方向梯度直方图(HOG)算法高效提取毛笔字独特的边缘与纹理特征,并结合支持向量
2025-06-21
【计算机视觉】基于Mediapipe的手部识别与运动检测系统实践:环境配置及项目实现详解-含源码
2025-06-21
深度学习卷积层工作原理详解:从基础概念到多种卷积类型的实现与应用,含源码
2025-06-21
深度学习基于MNIST数据集的手写数字识别:多层感知器神经网络模型设计与实现
2025-06-21
### 【计算机环境搭建】Windows与Linux系统、RK、树莓派下编程与深度学习环境配置指南
2025-06-21
机器学习损失函数详解:定义、种类及其在模型优化中的应用,附源码
2025-06-21
深度学习基于MNIST数据集的神经网络训练与优化:前向传播、梯度下降及超参数调优详解
2025-06-21
文件夹包含多个与M10激光雷达相关的文件和资料,包括软件安装包、产品手册、数据分析文件和示例程序 用户可以通过这些资源快速了解和使用M10系列激光雷达设备,涵盖了产品使用手册、数据采集与分析、接口调试
2025-04-27
hog+svm识别毛笔字体,毛笔字类型
2025-04-14
包含haar检测人脸、HOG检测人脸、CNN检测人脸、SSD检测人脸、MTCNN检测人脸、人脸检测训练模型、resnet人脸关键点检测、人脸识别、人脸打卡等
2025-04-14
### 文章总结:MB-TaylorFormer与YOLOv8的深度融合-含代码与理论
2025-06-28
### 【计算机视觉】基于AKConv革新YOLOv8:构建动态自适应卷积,提升多尺度目标检测性能+含教程与代码
2025-06-28
【计算机视觉】YOLOv8实战优化:解决AP值误差与提升小目标召回率的深度解析
2025-06-28
### 文章总结:基于iAFF迭代注意力特征融合模块的YOLOv8骨干网络与特征融合优化
2025-06-28
### 【计算机视觉】基于DWRSeg DWR模块的YOLOv10骨干网络深度优化:小目标检测性能显著提升的实战指南-含教程与代码
2025-06-28
### 【计算机视觉】基于FFA-Net深度融合的YOLOv8雾天目标检测性能突破:集成指南与优化方案
2025-06-28
【计算机视觉】聚焦线性注意力(FLA)优化YOLOv8:提升目标检测模型效率与性能的深度实践
2025-06-28
### 【计算机视觉】基于YOLOv10 C2fCIB的YOLOv8性能优化:高效特征提取与推理加速系统设计-含代码+理论
2025-06-28
【计算机视觉】基于YOLOv8的Cityscapes数据集目标检测全流程教程:从数据准备到UI界面实现及代码详解
2025-06-24
### 【医学图像分析】基于YOLOv8的智能肿瘤检测系统:从图像到诊断的深度学习应用设计-含代码和论文
2025-06-24
零售技术基于YOLOv8的智能货架商品检测系统开发指南:从环境配置到模型部署的全流程解析如何使用YOLO
2025-06-24
### 【计算机视觉】基于YOLOv8的单类别汽车检测完整教程:从数据准备到UI界面实现
2025-06-24
零售技术基于YOLOv8的智能货架商品检测系统开发指南:涵盖模型训练、数据处理与图形界面设计-含代码和论文
2025-06-24
【计算机视觉】基于YOLOv8的Stanford Dogs目标检测系统:120种犬类识别与图形界面开发全流程-含代码和论文
2025-06-24
【计算机视觉】Cityscape数据集处理与转换:从json到YOLO格式的全流程指南
2025-06-21
【计算机视觉】Fast-SCNN语义分割模型搭建与训练:城市街景数据集小尺寸图片快速训练及推理实现-含数据集
2025-06-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人