往期文章
RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049
RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753
RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404
以及深度学习部署工程师1~31主要学习tensorRT、cmake、docker、C++基础、语义分割、目标检测、关键点识别、RTSP推流、3D模型部署、车牌检测于识别项目、人脸属性分析(年龄、性别、名称、是否佩戴口罩)等知识
好的进入本节课程:
上节课将学习:
1、RTSP推流、RTMP推流两种方式
2、docker端口映射,本地拉流
3、YOLOv5推理后,将视频推流,用VCL拉流查看
4、tensorRT加速目标识别
这节课学习:
1、K-means聚类算法,识别聚众人群
2、多线程运行目标识别,加快前处理与后处理
3、TensorRT部署模型
4、YOLOv5用rtsp拉流检测
如果不想看原理可以直接跳转到实战演练部分。