深度学习部署实战:TensorRT+INT8量化+CMake工程化+RTSP推流(Ubuntu)指定区域行人检测与人群密度分析全流程12

往期文章
RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049
RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753
RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404
以及深度学习部署工程师1~31主要学习tensorRT、cmake、docker、C++基础、语义分割、目标检测、关键点识别、RTSP推流、3D模型部署、车牌检测于识别项目、人脸属性分析(年龄、性别、名称、是否佩戴口罩)等知识
好的进入本节课程:
上节课将学习:
1、RTSP推流、RTMP推流两种方式
2、docker端口映射,本地拉流
3、YOLOv5推理后,将视频推流,用VCL拉流查看
4、tensorRT加速目标识别

这节课学习:
1、K-means聚类算法,识别聚众人群
2、多线程运行目标识别,加快前处理与后处理
3、TensorRT部署模型
4、YOLOv5用rtsp拉流检测
如果不想看原理可以直接跳转到实战演练部分。
在这里插入图片描述

1. 聚众人群检测与指定区域内行人检测

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博导ai君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值