分割等和子集
给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。
解题思路
这是一个典型的动态规划问题,可以使用动态规划来解决
- 1、计算数组 nums 的总和 sum。
- 2、如果 sum 为奇数,那么无法将数组分割成两个和相等的子集,直接返回 false。
- 3、将问题转化为背包问题:尝试从数组中挑选一些数字,使得它们的和等于 sum 的一半。 如果能够找到这样的数字组合,就说明可以将数组分割成两个和相等的子集。
- 4、定义一个二维数组 dp,其中 dp[i][j] 表示在前 i 个数字中是否存在和为 j 的子集。
- 5、初始化 dp 数组,当不选取任何数字时,可以得到和为 0 的子集,因此 dp[i][0] = true(0 <= i <= nums.length);当没有数字可选时,除了和为 0 的子集,其他和均不可能存在,因此 dp[0][j] = false(1 <= j <= sum/2)。
- 6、遍历数组 nums,在每个位置考虑选取或不选取当前数字,更新 dp 数组。
- 7、返回 dp[nums.length][sum/2],表示是否存在和为 sum/2 的子集。
Java实现
public class PartitionEqualSubsetSum {
public boolean canPartition(int[] nums) {
int sum = 0;
for (int num : nums) {
sum += num;
}
if (sum % 2 != 0) {