- Cow Contest
N (1 ≤ N ≤ 100) cows, conveniently numbered 1…N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
- Line 1: Two space-separated integers: N and M
- Lines 2…M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
- Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5
4 3
4 2
3 2
1 2
2 5
Sample Output
2
题意
N个牛M个关系
下面M条数据表示A牛能干过B牛
问能确定排名的牛是几头
不存在环
思路
直接Floyd建图,能干过计1,反向计-1。
跑的时候i -> k k -> j同时为1或者 - 1 更新一下。
反向赋值 【i】【j】 = -【j】【i】就好了
最后判断一下每个牛与其他牛的关系一共是不是N - 1
是的话答案加 1
AC code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int a[105][105];
int m,n,x,y,ans;
void Floyd(){
for(int i = 1;i <= n;i++){
for(int j = 1;j <= n;j++){
for(int k = 1;k <= n;k++){
if(!a[i][j]){
if(a[i][k]==1&&a[k][j]==1)a[i][j]=1;
else if(a[i][k]==-1&&a[k][j]==-1)a[i][j]=-1;
}
a[j][i]=-a[i][j];
}
}
}
}
int main(){
std::ios::sync_with_stdio(false);
cin >> n >> m;
while(m--){
cin >> x >> y;
a[x][y]=1;
a[y][x]=-1;
}
Floyd();
for(int i = 1;i <= n;i++){
int sum = 0;
for(int j = 1;j <= n;j++)if(a[i][j]||a[j][i])sum++;
if(sum==n-1)ans++;
}
cout << ans <<endl;
return 0;
}