目录 0 写在前面 1 为什么需要核方法? 2 常用核函数总结 3 KSVM的python实现 3.1 设计核函数 3.2 KSVM与SVM的对比 0 写在前面 机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。 🚀详情:机器学习强基计划(附几十种经典模型源码合集) 1 为什么需要核方法? 说到核方法必须介绍一下线性可分的概念。所谓线性可分就是在 n n n维特征空间中可以用 n − 1 n-1